
Journal of Applied Sciences, Information and Computing (JASIC) 2025

Copyright© 2025 by authors; licensee JASIC. This article is an open-access article and can be freely accessed and distributed.

Journal of Applied Sciences, Information and Computing

Volume 6, Issue 1, April- May 2025

School of Mathematics and Computing, Kampala International University

ISSN: 1813-3509 https://doi.org/10.59568/JASIC-2025-6-1-17

An enhanced technique for the detection and securing of a

Potential vulnerable website

1Shukurah Oluwadamilola Yusuf and 2Adeleke Raheem Ajiboye

1 Department of Computer Science, Faculty of Communication and Information Sciences,

University of Ilorin, Ilorin, Nigeria
2 Department of Computer Science, School of Mathematics and Computing,

Kampala International University, Uganda

Abstract
Enhancing the web application security is very crucial for every organization, but ensuring accurate

implementation of vulnerability features can be challenging. Traditional vulnerability scanners struggle due to

limited security education for programmers, who often rely solely on web searches for information. However, the

use of an innovative techniques such as a dedicated rule engine scanner and a user interface that implements

precise vulnerability can be a good guide for programmers. This study focuses on accessing the http security

headers in web applications. The detection is actually possible through the security guidelines activated to achieve

this purpose. This study also emphasizes the level of accuracy as regards the security header implementation. The

resulting output of this study reveals the missing features which was validated using an established scanners and

qualitative assessment metrics. Findings from this study reveals some positive outcomes and informed content

policies as regards security, features and permissions. The study further reveals better approaches to secure a

website from becoming vulnerable, by ensuring the server configurations are regularly checked and hardened the

web page through the use of SSL/TLS with a valid certificate.

Keywords: Rule Engine, Security Education, Educational Vulnerability Scanner, Content Security Policy, Feature

Policy, Permissions Policy.

1. Introduction
The digital landscape in this era has projected the

use of websites as inevitable for businesses,

organizations and individual. This has really

helped to connect with users for improved

services regardless of location. However, the

proliferation of the internet, the threat of

cyberattacks which are basically targeting

vulnerable websites is increasing in multiples.

Hackers constantly exploit security weaknesses,

leading to data breaches, financial losses, and

reputational damage. As cyber threats evolve,

traditional security measures are often

insufficient to protect websites from

sophisticated attacks. This has led to the need for

more advanced and proactive techniques to detect

vulnerabilities and secure web platforms

effectively.

This paper presents an enhanced technique for the

detection and securing of vulnerable websites,

focusing on innovative approaches to identify

security flaws, prevent unauthorized access, and

ensure a robust defense against potential cyber

https://doaj.org/toc/3007-8903

https://doi.org/10.59568/JASIC-2025-6-1-17
https://doaj.org/toc/3007-8903

Journal of Applied Sciences, Information and Computing (JASIC) 2025

175 https://doi.org/10.59568/JASIC-2025-6-1-17 JASIC 6(1), 174 -180

threats. Through an integrated system of real-

time vulnerability scanning, behavior analysis,

and advanced encryption methods, this technique

aims to provide website owners with a

comprehensive solution to safeguard their digital

assets and maintain user trust.

The study highlights the limitations of traditional

vulnerability scanning approaches in providing

comprehensive solutions and educating

developers about security practices. It

emphasizes the lack of active participation in

educating developers and the growing prevalence

of software, resulting in security vulnerabilities

and cyber-attacks. The project aims to tackle

these issues by implementing rule engines within

web application vulnerability scanners,

particularly hard-constraint rule engines.

The study aims to address the broader issue of

inadequate security education among developers.

It seeks to improve vulnerability scanners'

reporting and remediation features by utilizing

rule engines, specifically hard-constraint rule

engines, to offer tailored and easily

understandable security education for developers

involved in vulnerability scanning.

The study aims to design an innovative rule-

engine-based framework, implement and

optimize the created system, and evaluate its

efficiency compared to non-educational models

to improve the security of vulnerable websites.

The study's significance lies in its potential to

bring about a new technological advancement

and innovation period, surpassing the constraints

of traditional vulnerability scanning methods and

enhancing security measures for web

applications.

The research also emphasizes adaptability,

security education, prompt and trustworthy

responses. It aims to impact various sectors,

including cybersecurity, software development,

compliance and regulations, and web

applications. The study's scope includes

investigating different aspects of enhancing web

application vulnerability scanning using rule-

engine techniques, particularly emphasizing

hard-constraint rule engines. It also covers ethical

concerns, potential prejudices, and fairness in

educational vulnerability scanning procedures.

In summary, this study aims to carry out some

transformations in the field of vulnerability

scanning which involve establishing a fresh

benchmark for education, adaptability, and

availability, emphasizing sustainable approaches

to technology advancement. We structured the

rest of this paper as follows: In Section 2, the

discussion of how website become vulnerable is

presented, the section is followed by a discussion

of works related to this study. Section 4 shows the

methods proposed for this study and the material

used is also presented in this section. The findings

from this study are shown and discussed in

Section 5. This study is concluded in Section 6

.

2. How websites become vulnerable

A vulnerable website is associated with the

following vulnerable features:

i.SQL Injection: This occurs when an attacker

attempts to insert malicious SQL queries into a

website’s input fields such as search boxes or

login forms, which are then executed by the

database, potentially revealing sensitive

information or corrupting the database.

ii. Cross-Site Scripting (XSS): This happens

when an attacker injects malicious scripts into

web pages viewed by other users. These scripts

can steal cookies, session tokens, or other

sensitive data.

iii. Cross-Site Request Forgery (CSRF): This

attack tricks users into performing actions they

didn’t intend to, like transferring funds or

changing account details, by sending

unauthorized requests from their unauthorized

authenticated session.

iv.Remote Code Execution (RCE): This

vulnerability allows attackers to execute arbitrary

code on the server, which could lead to full server

control, data exfiltration, or the installation of

malware.

 v.Insecure Authentication and Session

Management: Weak authentication mechanisms,

such as weak passwords, or poor session

management, like not properly invalidating user

sessions, can allow attackers to hijack accounts

and impersonate users.

vi. Outdated Software or Patches: Websites

using outdated software, content management

Journal of Applied Sciences, Information and Computing (JASIC) 2025

176 https://doi.org/10.59568/JASIC-2025-6-1-17 JASIC 6(1), 174 -180

systems (CMS), plugins, or libraries may have

known vulnerabilities that can be exploited if not

patched or updated.

vii. Insecure Communications: Websites that

don't use secure HTTP which runs on port

number 443 is exposes the website or make it

vulnerable. This web protocol encrypt data

between the server and the user’s browser are

susceptible to interception or man-in-the-middle

attacks.

3 Related Works

Several studies have addressed the critical issue

of identifying and mitigating vulnerabilities in

web application security. Baako and Umar (2020)

conducted a study on the security of Ghanaian e-

commerce websites, revealing significant

vulnerabilities that could jeopardize user data

security. Thus, they advocated for policy changes

to strengthen website security. (Abdulghaffar,

Elmrabit et al. 2023), introduced a pioneering

framework for automating vulnerability testing

using multiple scanners, showing improved

accuracy compared to individual scanners.

Similarly, (Kapodistria, Mitropoulos et al. 2011)

proposed a web security tool with high success

rates in identifying a wide range of attack types,

contributing to the web security arsenal. Machine

learning in a combination with some popular web

vulnerability scanner has proved to be efficient in

bolstering web security (Zangana 2024).

Also, while discussing the security risks for

Malaysian small businesses operating online

(Buja, Low et al. 2024) , emphasized the need for

improved web security practices in this sector.

(Fadlil, Riadi et al. 2024) delved into examining

SQL injection attacks and suggested the adoption

of firewalls as a defense mechanism. Also in a

creative approach, the study reported in (Xia,

Guo et al. 2024) aimed to fortify browser-based

cryptocurrency wallets, attaining a high success

rate in uncovering vulnerabilities across a large

sample. These wallets, like MetaMask,

MyEtherWallet, and others, are prime targets for

attackers due to their popularity and exposure to

the internet.

The study reported in (Lala, Kumar et al. 2021)

provided a different perspective, identifying

common vulnerabilities developers should

address to protect their applications, with a strong

emphasis on OWASP's top 10 vulnerabilities. In

a distinct context, (Lathifah, Amri et al. 2022)

examined security weaknesses in Sharia crowd-

funding websites, proposing enhancements to

safeguard user data and financial information.

Similarly, (Gandikota, Valluri et al. 2023),

stressed the urgent need for robust security

measures in web applications and the value of the

OWASP framework in identifying and

classifying vulnerabilities. In further studies,

(Priyanka and Smruthi 2020) explored web

application security vulnerabilities, offering

preventative measures for developers to mitigate

common attacks.

 In addition, (Ula, Adek et al. 2023) investigated

the security vulnerabilities in e-commerce

platforms, highlighting the need for prioritizing

security testing during development.

Furthermore, Kasmawi et al. (2023) delved into

cybersecurity vulnerabilities in college websites,

advocating for improved website security

practices and emphasizing the necessity of

ongoing vulnerability scanning. Meanwhile,

(Mushlihudin and Faisal 2023) focused on

fortifying web archive security through

continuous vulnerability testing using the

OWASP method, thereby reducing overall risk.

(Setiawan and Setiyadi 2018) emphasized the

importance of a holistic approach to website data

security, encompassing website, server, and

network security.

The use of scanner ++ reported in (Yin, Xu et al.

2023), was a collaborative framework to enhance

vulnerability detection in web applications. The

study highlight the potential of collaboration in

vulnerability detection. (Srivastava, Raghuvanshi

et al. 2023), underscored the criticality of security

in e-commerce websites, prioritizing customer

and website data protection. They also provided

a roadmap for securing e-commerce websites

using established practices and tools

In a different approach, (Sitohang, Asnar et al.

2024), focused on improving web application

security testing, proposing mutation testing as a

valuable tool, particularly in detecting Cross-Site

Request Forgery (CSRF) vulnerabilities. It can be

Journal of Applied Sciences, Information and Computing (JASIC) 2025

177 https://doi.org/10.59568/JASIC-2025-6-1-17 JASIC 6(1), 174 -180

inferred from the review work that the literature

has provides valuable insights into the evolving

landscape of web application security,

showcasing a range of innovative approaches,

sector-specific considerations, and the critical

need for proactive and collaborative strategies to

identify and mitigate vulnerabilities.

4 Material and Methods

In this section, we describe the process of

integrating a rule engine into a vulnerability

scanner. The focus is on utilizing rule engine

methods to strengthen vulnerability scanning,

reduce reliance on web searches, and improve

overall system effectiveness. Other tasks

performed in this section includes: data

preparation, software design, information

gathering, performance evaluation, and features

integration. The system analysis is further broken

into a number of some subsections in the

following orders:

4.1 System Analysis

i. Existing systems

The existing vulnerability scanning methods have

shown improvement in effectiveness, but they

still face challenges in adaptability and security

education. Collaborative efforts from different

fields are required to create more beginner-

friendly and educational solutions.

ii. Proposed system framework

The proposed system represented in Figure 1,

combines hard-constraint rule engines with user

interface methods to transform vulnerability

scanning. It provides advanced security

education through a rule engine and prioritizes

user experience with intuitive interfaces, setting a

new benchmark for security education and ease

of use for beginners.

Figure 1. The framework of the proposed system

In the framework of the proposed system,

equation is formulated to represent the

relationship between the vulnerability detection

rate, the mitigation success rate, and the overall

website security level:

S = f(V,M,T) (1)

where:

S is the overall security level of the website.

V is the vulnerability detection rate (how

effectively vulnerabilities are detected).

M s the mitigation success rate (how well

security measures prevent or neutralize

identified threats).

T is the time or adaptability factor (the time it

takes to detect and secure the website, or how

adaptable the technique is to emerging threats).

This equation describes how the security of a

website depend on both how well

vulnerabilities are identified (V) and how

effectively the threats are mitigated (M). The

time factor (T) can play a role in determining

how quickly the website adapts to new

vulnerabilities or emerging attack techniques.

As for the vulnerability detection rate (V), this

this could be modelled using a detection rate,

say D(t), which changes over time t,

representing how quickly vulnerabilities are

detected. This might be modelled with an

exponential growth function, assuming the

detection algorithm improves over time as

shown in equation 2.

 𝐷 (𝑡) = 𝐷0(1 − 𝑒−𝑘𝑡) (2)

Journal of Applied Sciences, Information and Computing (JASIC) 2025

178 https://doi.org/10.59568/JASIC-2025-6-1-17 JASIC 6(1), 174 -180

where

 D0 = maximum detection rate

 k = constant rate of improvement

 t = time.

The mitigation success rate (M) could be

modelled based on the percentage of

succesfully mitigated vulnerabilities over time,

t. This often involves a success factor that

decreases as more vulnerabilities are deteected

as shown in equation 3.

𝑀(𝑡) =
𝑉𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑(𝑡)

𝑉𝑡𝑜𝑡𝑎𝑙 (t)
 x 100 (3)

where

M(t) = Mitigation Success Rate at time, t (in

percentage)

𝑉𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑒𝑑 (t) is the number of vulnerabilities

mitigated by time, t

𝑉𝑡𝑜𝑡𝑎𝑙 (t) is the total number of vulnerabilities

identified at time, t

 4.2 System development tools and

procedures

 The vulnerability scanner system was

developed using a range of tools and

technologies to ensure the system perform

effectively. The development is simplified in

compliance with security protocols. The

essential tools and technologies utilized include

Python, Django, SQLite, Bootstrap, and

OWASP.

The procedures basically involve setting up the

system's development area, obtaining necessary

scripts and resources, and verifying the

installation of required libraries and other

necessary packages using a package manager

like pip for installation. Also, the requests

library and urllib play important roles in the

educational vulnerability scanner project. The

requests library simplifies the HTTP request

process and supports complex scenarios such as

session management and authentication. On the

other hand, urllib, as part of the Python standard

library, provides essential capabilities for

making HTTP requests and handling of URLs.

The vulnerability scanner methodology also

involves structured header scanning

functionality, which was implemented in the

scan-headers function using the requests

library.

 Figure 2. A view of the input section

4.3 The Use Case Diagram

The use case diagram as shown in Figure 3,

illustrates how users interact with the

vulnerability scanner system to scan a URL,

review scan history, and schedule regular scans

for specific URLs. It depicts the interaction

between users and the system's features,

considering internal and external factors

influencing the system's behavior.

Journal of Applied Sciences, Information and Computing (JASIC) 2025

179 https://doi.org/10.59568/JASIC-2025-6-1-17 JASIC 6(1), 174 -180

 Figure 3. Illustration of user interaction with the vulnerability scanner system

4.3 Vulnerability Information Gathering

The development also includes gathering

comprehensive rules for the rule engine from

reputable sources such as OWASP and

integrating these rules into the vulnerability

scanner.

4.4 Rule Engine Integration

Lastly, the rule engine systematically checks the

presence and configuration of important

security headers in web applications' HTTP

responses and is continuously updated to remain

current and comprehensive.

4.5 Applying the User Interfaces

In order to design and implement the user

interface for use in the vulnerability scanning

application, a number of specific user interface

requirements were identified and implemented

using HTML, CSS, JavaScript, and Bootstrap.

The frontend components were connected to the

backend logic, thoroughly tested, and refined

based on user feedback.

4.6 Testing and Validation

During testing and validation, the system

underwent rigorous assessment to gauge its

performance and efficacy so as to guide the

programmers in addressing vulnerabilities. The

validation process encompassed qualitative

evaluations to assess the accuracy, reliability,

and overall quality of the vulnerability scanning

process and educational content on security. The

system was exposed to various types of web

applications from the dataset to evaluate its

resilience and adaptability under diverse

conditions.

4.6.1 Referrer-Policy:

X-XSS-Protection is a header that steps pages

from loading when they detect reflected cross-

site scripting (XSS) attacks. Some selected web

pages were thoroughly scanned for missing key

features that is paramount to web security. The

following are the required steps to fix the

detected missing feature These steps were

implemented in Python, Node.js, Java and PhP.

Each of the program or script written shows

capacity to fix the missing feature.

 Steps:

1. Set X-XSS-Protection header to “t:

mode=block”

2. Disable inline scripting

3. Implement Content Policy (CSP) to mitigate

XSS attacks.

4. Use input validation and output encoding to

prevent XSS vulnerabilities

4.7 Comparison Analysis

The research compares HTTP security headers

across various web applications using two

widely recognized vulnerability scanners,

Mozilla Observatory and SecurityHeaders.io.

Four web application URLs from OWASP’s

Vulnerable Web Application directory were

chosen for the analysis. The headers and

policies assessed included X-Frame-Option

Header, Content-Security-Policy, X-XSS-

Protection-Content-Type-Options, Referrer-

Policy, Feature-Policy, and Permissions-Policy.

Journal of Applied Sciences, Information and Computing (JASIC) 2025

180 https://doi.org/10.59568/JASIC-2025-6-1-17 JASIC 6(1), 174 -180

5 The Study Findings and Discussion

Findings from this study is discussed based on

the consistencies and some discrepancies

identified:

1. Consistencies:

i. Clarity of Mitigation Strategy: All the

vulnerability scanners provided comprehensive

information on security education, using clear

and succinct language. In an effort to better

secure a website from becoming vulnerable, the

server configurations should be checked from

time to time, the site should be hardened through

the use of https with a valid certificate and

whatever known issues detected should be

patched promptly.

ii. Availability of Further Resources: All the

vulnerability scanners offered hyperlinks for

additional reading, particularly to the scanners'

websites. Hyperlink are navigation elements

usually found in a digital document that directs

the users to a different document or web page.

Well-known hyperlinks include Text links,

Image links and Button links.

2. Discrepancies:

i. Actionability: The Mozilla scanner and

securityheader.io scanner do not offer practical

instructions. Their security instruction is

provided in the form of an article. As a solution,

the scanner used in this study provides explicit

instructions for each stage, allowing

programmers to adhere to the sequence of

mitigation procedures in a simple way.

ii. Depth of Explanation: The securityheader.io

lacks comprehensive explanations. The Mozilla

scanner provides a comprehensive analysis but

does not delve into the implementation details of

security headers in different programming

languages. The scanner used in this study

provides a solution by demonstrating the

implementation of the security header in multiple

programming languages.

iii. Inclusion of a Code Snippet: Also, the scanner

used in this study includes a code snippet for six

different languages and their implementation:

Python, node.js, Java, PHP, ASP.NET, and Ruby.

Mozilla has an implementation for just HTML,

while securityheader.io doesn’t have any.

6 Conclusion and Recommendation

This study aims to address the challenges faced

by programmers in handling web application

security issues effectively. It involves integrating

a rule engine into a vulnerability scanner using

Python to extract header requests and automate

rule development. The main objectives were to

optimize the generation of mitigation rules,

enhance user engagement through an intuitive

graphical interface, and improve the efficiency

and effectiveness of vulnerability identification

and mitigation.

The comparison investigation demonstrated the

proposed method's consistent accuracy and

reliability and can be compared to other well-

established results in this area. The proposed

system identified two additional missing

headers; this unique development indicates a

greater extent of detection coverage.

Additionally, the system was found to be more

programmer-friendly than several others in the

related studies, allowing programmers versed in

various languages to use the implementation

codes for their needs.

However, the approach is not without its own

limitations, such as the rule engine's reliance on

manual input, the focus on vulnerabilities related

to website headers, and the potential for false

positives and improper implementation flaws.

Recommendation

Recommendations suggested include focusing

on a holistic approach to vulnerability scanning,

incorporating the educational vulnerability

scanner into development environments, and

enhancing the system with additional features to

improve the user experience and learning

process.

Future research opportunities include exploring

the integration of machine learning algorithms to

autonomously build and optimize rules based on

continuous examination of web application

security data. Additionally, investigating the

incorporation of natural language processing

methods to read and analyze the security rules

and standards could further enhance the rule

engine's abilities.

Journal of Applied Sciences, Information and Computing (JASIC) 2025

181 https://doi.org/10.59568/JASIC-2025-6-1-17 JASIC 6(1), 174 -180

In summary, future research should focus on

refining vulnerability scanners to be more

intelligent, adaptable, and educational, while

ensuring continual enhancements for the best

user experience when identifying and fixing

vulnerabilities.

7. References

[1] Abdulghaffar, K., et al. (2023). "Enhancing

Web Application Security through Automated

Penetration Testing with Multiple Vulnerability

Scanners." Computers 12(11): 235.

[2] Buja, A. G., et al. (2024). "Analysis of Web

Vulnerability Using Open-Source Scanners on

Different Types of Small Entrepreneur Web

Applications in Malaysia." Journal of Advanced

Research in Applied Sciences and Engineering

Technology 40(1): 174-188.

[3] Fadlil, A., et al. (2024). "Mitigation from

SQL Injection Attacks on Web Server using

Open Web Application Security Project

Framework." International Journal of

Engineering 37(4): 635-645.

[4] Gandikota, P. S. S. K., et al. (2023). "Web

Application Security through Comprehensive

Vulnerability Assessment." Procedia Computer

Science 230: 168-182.

[5] Kapodistria, H., et al. (2011). "An advanced

web attack detection and prevention tool."

Information Management & Computer Security

19(5): 280-299.

[6] Lala, S. K., et al. (2021). Secure web

development using owasp guidelines. 2021 5th

International Conference on Intelligent

Computing and Control Systems (ICICCS),

IEEE.

[7] Lathifah, A., et al. (2022). Security

vulnerability analysis of the sharia

crowdfunding website using owasp-zap. 2022

10th International Conference on Cyber and IT

Service Management (CITSM), IEEE.

[8] Mushlihudin, M. and D. Faisal (2023).

"Vulnerability Analysis and Prevention on

Software as a Service (SaaS) of Archive

Websites." Buletin Ilmiah Sarjana Teknik

Elektro 5(3): 351-358.

[9] Priyanka, A. K. and S. S. Smruthi (2020).

Web Application Vulnerabilities: Exploitation

and Prevention. 2020 Second International

Conference on Inventive Research in

Computing Applications (ICIRCA), IEEE.

[10] Setiawan, E. B. and A. Setiyadi (2018).

Web vulnerability analysis and implementation.

IOP conference series: materials science and

engineering, IOP Publishing.

[11] Sitohang, B., et al. (2024). Securing Cross-

Site Request Forgery Vulnerabilities in Web

Applications Using Mutation Analysis. 2024

2nd International Conference on Software

Engineering and Information Technology

(ICoSEIT), IEEE.

[12] Srivastava, M., et al. (2023). Security and

Scalability of E-Commerce Website by OWASP

threats. 2023 6th International Conference on

Information Systems and Computer Networks

(ISCON), IEEE.

[13] Ula, M., et al. (2023). Vulnerability risk

assessment using Open Web Application

Security Project (OWASP) methodology for e-

marketplace. AIP Conference Proceedings, AIP

Publishing.

[14] Xia, P., et al. (2024). "WalletRadar:

towards automating the detection of

vulnerabilities in browser-based cryptocurrency

wallets." Automated Software Engineering

31(1): 32.

[15] Yin, Z., et al. (2023). "Scanner++:

Enhanced Vulnerability Detection of Web

Applications with Attack Intent

Synchronization." ACM Transactions on

Software Engineering and Methodology 32(1):

1-30.

[16] Zangana, H. M. (2024). "Exploring the

Landscape of Website Vulnerability Scanners: A

Comprehensive Review and Comparative

Analysis." Redefining Security With Cyber AI:

111-129.

