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Abstract 
Kerogen classification helps hydrocarbon explorers assess the ability of rocks to produce oil and natural gas. The traditional 

methods of Rock-eval pyrolysis and elemental analysis still rely on previous data interpretations and often possess 

inaccuracies. We propose using machine learning approaches to enhance the accuracy and speed of kerogen type 

classification in the Niger Delta Basin utilizing geochemical data. Geochemical properties such as S1, S2, S3, Tmax, HI, 

OI, TOC, and PI were derived from the analyzed oil and gas well samples. Various supervised machine learning algorithms 

such as Random Forest, Gradient Boosting, Support Vector Machines (SVM) and Decision Trees were used to assign 

kerogen to Types I to IV. Performance measures were determined by computing accuracy, precision, recall and the F1 

score. Ensemble methods showed the highest levels of precision and reliability among all the algorithms. It was determined 

that Oxygen Index, S3 and Tmax played the central role in determining kerogen quality compared to other characteristics. 

The algorithms (Decision Tree, Random Forest, Gradient Boosting, Ada Boosting, Bagging and Extra Trees) showed 

comparable results in classification precision. Applying machine learning techniques substantially improves the accuracy 

and objectivity of kerogen classification and exploring ensemble methods produces geoscientific results that are much 

more precise when compared with those obtained using conventional methods. Subsequently, the author found that only 

three of the features showed nearly equal percent contributions. The three highest percentage contributions came from 

oxygen index (17.5%), carbon dioxide generated through pyrolysis (17.3%) and temperature (16.2%). This information 

has been added to the current knowledge available in the field of geosciences 
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1. Introduction 

Kerogen, found in sedimentary rocks, is responsible 

for the development of petroleum and natural gas. 

Oil and natural gas are formed by the conversion of 

kerogen under various diagenesis, catagenesis and 

metagenesis processes. Kerogen classification is 

important in petroleum exploration and production 

since it provides insight into the characteristics of the 

hydrocarbon reservoir as well as its maturity stage. 

Traditional ways of evaluating kerogen include 

Rock-Eval pyrolysis, elemental analysis and vitrinite 

reflectance measurements (Yan, et al., 2019; Zhang, 

et al., 2021; Safaei-Farouji and Kadkhodaie, 2021). 

Several studies have determined how the 

classification of kerogen can affect the potential for 

oil and gas exploration (Zhang et al., 2021; Safaei-

Farouji and Kadkhodaie, 2021). Conventional 

techniques for analyzing kerogen suffer from 

drawbacks including restricted accuracy, lengthy 

analysis process reliance on human judgment (Kühl, 

et al., 2022; Kapoor, 2024). ML applications have 
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brought about new avenues that optimize the 

accuracy and efficiency of kerogen classification 

(Chen, et al., 2017; Azadivash, et al., 2023).  

The evaluation of source rock potential requires the 

use of classification system which divides kerogen 

into Types I, II, III and IV (Guimarães, et al., 2022). 

The origin of Type I kerogen from algal material 

produces a rich hydrogen source that leads to high 

levels of oil formation potential (Craddock, et al., 

2020). Organisms of both planktonic and bacterial 

origin generate Type II kerogen which leads to oil as 

well as natural gas formation (Chen, et al., 2017). 

The main component of Type III kerogen originates 

from terrestrial plants which tends to generate 

natural gas. Type IV kerogen fails to generate 

hydrocarbons because it contains a low amount of 

hydrogen and exists in an advanced state of 

oxidation (Zhang, et al., 2021). Petroleum system 

modeling and basin analysis and exploration 

strategies require proper distinction between 

different kerogen types (Agrawal and Sharma, 

2018). 

The established methods for kerogen classification 

need laboratory work with specialized expertise and 

lengthily analytical processes. Rock-Eval pyrolysis 

generates its estimates through multiple heating 

steps for the evaluation of hydrocarbon production 

capability (Khatibi, et al., 2018). The widespread use 

of this measurement technique happens despite the 

possibility that it can be affected by sample 

heterogeneity and measurement errors as well as 

operator biases. The conventional interpretation 

methodology uses empirical graphic methods and 

statistical correlations but does not represent all 

natural kerogen types (BLANC-VA and M-M., 

1990). The deployment of machine learning 

procedures marks an important advancement in 

operation because these methods yield both better 

identification precision and execution efficiency 

(Blackwell, et al., 2015; Gollin and Udry, 2020; 

Yeganeh, et al., 2023). 

Multiple geochemical analyses have demonstrated 

successful use of support vector machines (SVM), 

random forests and artificial neural networks (ANN) 

and deep learning models because they optimize 

machine learning approaches (Safaei-Farouji and 

Kadkhodaie, 2021). Big multidimensional datasets 

can be analyzed through these methods to uncover 

hidden patterns which regular methods cannot detect 

(Azadivash, et al., 2023). The success rate of 

kerogen type prediction by ML models increases 

with the use of detailed geochemical datasets while 

reducing human opinion-based analysis along with 

manual data handling (Farhadi, et al., 2022; He, at 

al., 2022; Wei, et at., 2023). 

ML classifies kerogen using faster examination 

techniques that preserve result accuracy to process 

geochemical datasets in real-time (Jooshaki, et al, 

2021). Hydrocarbon exploration operations gain 

significant economic performance and operational 

success from fast decision processes according to 

Khang et al. (2020) and Farhadi et al. (2022) and 

Kühl et al. (2022). Geoscientists dedicate their time 

to high-level interpretation since ML-based 

workflows reduce their need to perform repetitive 

processing tasks (Azadivash, et al., 2023).  

Available research demonstrates that ML 

technology provides successful solutions within 

geochemical study fields. The supervised learning 

techniques enable researchers to use Rock-Eval 

parameter data for successfully identifying source 

rocks (Lawal, et al., 2024). Existing data in labeled 

datasets supports ML models during learning 

processes to produce accurate predictions for new 

samples. The clustering algorithms available under 

unsupervised learning allow researchers to detect 

classifications in geochemical datasets that reveals 

information about both kerogen composition and 

distribution patterns (Safaei-Farouji and 

Kadkhodaie, 2021).  

The execution of geochemical examinations enables 

machine learning to combine data sources. To 

classify kerogen through ML models all Rock-Eval 

data should be merged with geophysical, 

petrophysical and spectral information. The 

combined assessment technique improves both the 

analyses of potential source rocks and offers 

enhanced exploration strategies and risk evaluation 

methods for hydrocarbon exploration (Lawal, et al., 

2024). ML delivers its key addition to geochemistry 

by processing unpredictable and inconsistent data 

characteristics (Wei, et at., 2023). The attainment of 

accurate classification data becomes challenging 

through traditional methods due to data flaws 

(Farhadi, et al., 2022). The application of machine 

learning as a geochemical analysis tool stems from 
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its capability to operate in data poor and hard-to-

access conditions as demonstrated by Yan et al 

(2019), Craddock et al (2020) and Kühl et al (2022). 

The adoption of ML for kerogen categorization 

brings both advantages and technical barriers which 

require further advancement. The main challenge of 

using ML systems for classification work stems 

from their requirement of substantial accurate 

information within extensive datasets. The ability of 

machine learning models to predict data depends 

directly on the quality level as well as the 

diversification of the original dataset inputs. Any 

mistake in data preprocessing and validation 

procedures leads to incorrect predictions because 

unstable or partial data contain system biases 

(Lawal, et al., 2024). 

Interpreting the working mechanisms of ML models 

remains a major concern when conducting 

geochemical research. The black-box operation of 

ML models makes it hard to track causal reasons 

explaining specific classifications because 

traditional approaches offer better understanding of 

geochemical connections. Research for XAI 

technologies continues to solve the interpretability 

problem while maintaining scientific integrity in 

ML-based geochemical assessments (Yeganeh, et 

al., 2023). 

The growing access to open-access geochemical 

databases creates exceptional prospects for 

improving ML applications in kerogen evaluation. 

Academic institutions together with industries and 

government bodies should collaborate for 

standardizing ML workflows and enabling data 

sharing to enhance geochemical investigations. 

Cloud computing together with high-performance 

computing (HPC) resources enables the 

enhancement of both scalability and efficiency in 

ML-driven geochemical research. Kerogen 

classification research should be a function of the 

application of machine learning techniques. Real-

time data acquisition through portable pyrolysis 

analyzers will promote smooth application of ML 

techniques for field-based geochemical analysis 

(Blackwell, et al., 2015; Gollin and Udry, 2020). The 

adoption of machine learning techniques signifies an 

absolute change in how we analyze kerogen types 

using geochemical methods (Kapoor, 2024). The 

adoption of advanced computational approaches 

through ML makes kerogen classification both more 

precise and efficient and supports larger-scale 

operations that overcome previous traditional 

evaluation weaknesses (Farhadi, et al., 2022; 

Yeganeh, et al., 2023). Future advancement in 

technology will unite ML power with geochemical 

investigations for the optimization of hydrocarbon 

exploration along with resource management. This 

research is intended to identify the most influential 

geochemical parameter for kerogen classification 

and also to predict the most appropriate kerogen type 

and generation of hydrocarbon potential from 

geochemical inputs. Exploring ML technique as the 

main aim of this research is expected to accurately 

improve the prediction of hydrocarbon generation 

potential. 

 

2. Materials and Methods 

2.1 Study Area and Geological Set-up 

The Niger Delta Basin is a productive sedimentary 

basin situated in southern Nigeria and lies along the 

Gulf of Guinea continental margin. It spans from the 

Bight of Benin to the Calabar Flank and covers the 

provinces of Delta, Bayelsa, Rivers, Akwa Ibom and 

Cross River. Tectonic subsidence during the onset of 

the South Atlantic Ocean resulted in the deposition of 

extensive successions of deltaic and marine 

sediments. The Niger Delta Basin is made up of three 

principal sedimentary sequences. Sequences of deep 

marine shales (Akata Formation), continuous 

deposition of sandstone and shale combinations 

(Agbada Formation) and continental sands (Benin 

Formation) were deposited from the Eocene to the 

present day. they're underlain by the 

unmetamorphosed basements rocks of the Nigerian 

Shield. Growth faults, rollover anticlines and shale 

diapirs play an important role in controlling fluid 

movements and trap formation within the basin. The 

Niger Delta Basin is renowned for its high yield of 

crude oil due to an abundance of organic-enriched 

deposits. 

2.2 Geochemical Significance 

The Niger Delta Basin holds significant hydrocarbon 

exploration potential due to the presence of organic-

rich sediments that serve as source rocks. The basin's 

lacustrine depositional environment promotes the 
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accumulation of high-quality kerogen, particularly 

Type I and Type II, which are essential for oil and gas 

generation. Previous studies (Gollin and Udry, 2020; 

Yeganeh, et al., 2023) indicate that high total organic 

carbon (TOC) values and favorable hydrogen index 

(HI) values suggest a thermally mature source rock 

system within the basin. Additionally, the basin's 

tectonic activity has created fault-related migration 

pathways, which are crucial for hydrocarbon 

accumulation. Geochemical investigations using 

Rock-Eval pyrolysis, biomarker analysis, and 

elemental composition studies have revealed 

promising indications of petroleum potential (Zhang, 

et al., 2021). The integration of machine learning 

techniques in analyzing geochemical data can 

enhance the accuracy of kerogen classification, 

leading to improved hydrocarbon prospectivity 

assessments in the region.  

 

2.3 Geochemical Analysis of Data and Variables 

Used 

The data for this study were obtained from 

geochemical samples taken in the Niger Delta Basin, 

Nigeria. The data includes geochemistry data 

obtained from the analysis of three rock samples - 

GLAD7, MAL05_1B_1C and MAL05_1D - using 

Rock-Eval pyrolysis. Furthermore, the data consist of 

detailed core sample images, Total Organic Carbon 

(TOC) amounts and results from X-ray fluorescence 

(XRF) analysis. We consider kerogen as our target 

variable of interest on which the aim and objectives 

were centered. This specific variable is classified into 

four: oil type I, oil type II, gas type III, and gas and 

oil type III. We also consider the following feature 

variables: S1 (free hydrocarbons measured in mg 

HC/g rock); S2 (Hydrocarbons generated through 

pyrolysis (in mg HC/g rock); S3 (Carbon dioxide 

generated through pyrolysis measured in mg CO₂/g 

rock); Tmax (Temperature at which the maximum 

release of hydrocarbons occurs measured in °C); HI 

(Hydrogen Index indicating the ratio of S2 to Total 

Organic Carbon (TOC), usually in mg HC/g TOC); 

OI (Oxygen Index indicating the ratio of S3 to TOC, 

usually in mg CO₂/g TOC); TOC (Total Organic 

Carbon content measured in weight %); PI 

(Production Index calculated as the division of S1 by 

(S1 + S2), indicating the stage of hydrocarbon 

generation); S2/S3 and finally S1+S2. 

2.4 Preprocessing Steps 

2.4.1 Information about the Data 

All the feature variables are float64 Dtype while the 

target varible is an object data type. Both are 78 non-

null counts with 8.7+ memory usage. The target 

variable, which was originally an object data type, 

was converted to category to ease classification. 

 

2.4.2 EDA Explored 

The use of frequency (counts), mean, standard 

deviation, minimum, maximum, 25% (first quartile), 

50% (which is the same as median), and 75% 

(equivalently third quartile) were all explored as 

exploratory data analysis (EDA) for feature variables 

while the use frequency and percentage of each of the 

kerogen types was explored as EDA for the target 

variable. Pie and bar charts were also used to present 

information on the types of kerogen under study. 

2.4.3 Missing Values 

Python codes were written to check for the existence 

of missing values within the dataset used. No missing 

value was found as this paves way for further 

analysis. 

2.4.4 Outliers 

The use of z-score was explored to check whether or 

not there are outliers in our dataset. The result 

obtained from this method showed that there are 

outliers and this calls for data transformation. 

2.4.5 Normality Assumption 

We applied Shapiro-wilk statistical test to confirm the 

violation of normality assumption on our dataset and 

it’s discovered that the datasets were not normally 

distributed. To overcome this, transformation of data 

was required as the best option. 

 

2.4.6 Data Transformation 

Before performing this task, we separated the datasets 

by defining target and feature variables. After this, we 

splited both the target (kerogen types) and feature 

variables into train and test data. 80% of our datasets 

were trained while the remaining 20% served as 

testing data. Each of the training and testing feature 

variables was cleaned by standardization method of 

data transformation. 

 

2.5 Machine Learning Algorithms Explored  

Several machine learning algorithms are available in 

the literature. Choosing specific machine learning 
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algorithm for a particular task always depends on the 

nature and type of the problems at hand. The current 

research is discussing a target variable of four 

categories: oil type I, oil type II, gas type III, and 

finally gas and oil type III. Since we have this kind of 

scenario, classification algorithms are suitable and 

therefore the most commonly used included the 

following: Logistic Regression, Ridge Classifier CV, 

K-Nearest Neighbour (KNN), Random Forest, 

Decision Tree, Gradient Boosting, Ada Boost, 

Bagging, Extra Tree, Gaussian NB,  and Support 

Vector Machine (SVM). 

 

2.6 Evaluation Metrics Explored 

Many books and articles have been written on 

evaluation metrics for classification algorithms in 

machine learning. Only four were used here. Let’s 

define the following parameters: 1m  = Number of 

positive cases which are correctly predicted; 2m  = 

Number of negative cases which are correctly 

predicted; 1k  = Number of positive cases which are 

incorrectly predicted; and 2k  = Number of negative 

cases which are incorrectly predicted. Having 

predefined these parameters, the four metrics can be 

discussed one after the other in the following 

subheadings. 

2.6.1 Accuracy 

It is a measure of percentage of correctly classified 

cases or instances amongst all. It is suitable for a 

situation when we have balanced datasets. Accuracy 

is mathematically expressed as follows: 

Accuarcy  = 
2121

21

kkmm

mm

+++

+
               (1) 

 

2.6.2 Precision 

This is also known as Positive Predictive Value 

(PPV). It is simply a measure of percentage of 

correctly predicted positive cases out of all predicted 

positive cases. It is mathematically expressed as 

Precision  = 
11

1

km

m

+
    (2) 

2.6.3 Recall 

Recall is a measure of sensitivity which presents the 

percentage of actual positive cases that were correctly 

identified. It is used in a situation when false 

negatives are required to be minimized. Recall is 

expressed in mathematical form as follows: 

Recall  = 
21

1

km

m

+
                 (3) 

2.6.4 F1 Score 

When we take the harmonic mean of both Precision 

and Recall, we have what is called F1 score. It is 

appropriately used for a situation when datasets are 

imbalanced. Thus, the computational approach is  

F1 Score  =  



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



+ callecision

callXecision

RePr

RePr
.2            (4) 

3. Results and Interpretations  

3.1 Descriptive Analyses 

This is a statistical method of data analysis for the 

purpose of description of collected data and 

identification of its tendencies. It may start with the 

data range which is simply the smallest value in a set 

of data and the largest value in a set of data hence 

giving an initial look to the scope of a specific set of 

data. There is the measure of mean, central tendency 

that gives a general idea of the central location of the 

data by summing all the values and dividing the sum 

by the total count. On the other hand the median, 

which is the middle value when data is ordered from 

highest to lowest, allows the controlling for skewed 

distributions, which using the above formula are 

distorted by extreme high or low values. 

Apart from central tendency, measures of variability 

such as standard deviations are as important in 

descriptive analysis. In practical terms the standard 

deviation calculates how much, on average, data 

points in the data sample deviate from the sample 

mean, defining the variability of the data. Small 

coefficient of variation implies that variance of values 

is small, and hence the number is closely grouped 

around the average while large coefficient of 

variation is suggestive of large variability. Thus, 

descriptive analysis that presupposes the use of 

various statistical measures helps to correctly 

represent vast amounts of information in the form of 

figures and characters; it allows to compare several 

sets of data, reveal their patterns and, thus, come to 

certain conclusions. The following table presents the 

results of descriptive analyses. 

Table 3.1: Results of the Descriptive Analyses for Feature Variables 

 Variables of Interest 
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Statistics S1 S2 S3 Tmax HI OI TOC PI S2/S3 S1+S2 

Min. 0.18 0.19 0.28 333 0 14.694 0.34 0.0242 0.138 0.38 

Max. 11.910 46.01 3.72 440 791.95 228.125 5.52 0.689 38.79 47.15 

Mean 0.791 12.466 1.377 422.475 408.41 63.153 2.29 0.1384 9.64 13.26 

Median 0.79 12.466 1.377 428 408 63.15 2.356 0.102 9.05 13.26 

Stand 

Dev. 

0.326 8.99 0.59 21.81 199.54 32.797 1.25 0.134 7.001 9.23 

  Source: System Computations (2025) 

 

The actual values of geochemical parameters 

examine the differences relating to the identification 

of the hydrocarbon generation potential of source 

rocks, as presented in Table 3.1. Free hydrocarbons 

S1 in the range of from 0.18 to 11.91 mg HC/g rock 

with mean 0.791; hydrocarbons generated through 

pyrolysis S2 from 0.19 to 46.01 mg HC/g rock with 

the average of 12.466. This shows that the area has 

blocks of low and high prospective for hydrocarbon 

accumulation. It accurately demonstrated high 

variability in the generative potential of.Populating to 

S2 was approximately 8.99; thereby highlighting that 

the results are highly variable. S3 (CO₂ generated) is 

also low averaged at 1.377 mg CO₂/g rock showing 

low degree of oxidation of organic matter. 

The thermal maturity of these rocks based on Tmax 

value varies between 333°C (Immature) and 440°C 

(Mature to post-Mature) with a mean of 422.475 °C; 

this shows that most of the samples are in the oil 

generating window. Average HI and OI values of 

408.41 mg HC/g TOC and 63.153 mg CO₂/g TOC 

suggest that the dominant kerogen type is 

predominantly oil-prone, with moderate oxidation. 

The observed TOC content varied between 0.34 % 

and 5.52 % with an average of 2.29 % for the samples 

studied indicates moderate organic richness but not 

all the samples qualify for minimum TOC required to 

generate hydrocarbons. An evaluation of the 

distribution of hydrocarbons obtained by GC/MS 

analysis of the source rock, the Production Index (PI) 

and S2/S3 ratios reveal the source rocks to be a mix 

of immature to mature source rock sediment with 

good generative potential across the board. This 

increased heterogeneity in the dataset is apparent 

from the present results, which demonstrate both 

organic richness and thermal maturity levels varying 

quite widely. 

 

3.2 Explanatory Data Analysis (EDA) 

Exploratory data analysis is the act of allowing the 

data to speak for itself and enabling the discovery of 

facts that exist in the data without reference to a pre-

conditioned form of analysis. It is a very important 

step in data analysis made to enhance the 

understanding of the dataset’s properties, structure 

and problematic

. 

3.2.1 EDA for Kerogen Type 

Table 3.2.1: Frequency Distribution for Kerogen Type 

Classes Frequency 

Oil Type I 71 

Oil Type II 03 

Gas Type III 03 

Gas and Oil Type III 01 

Total 78 

 Source: System Computations (2025) 

The percentage distribution of Kerogen Type is shown using Figures 1 and 2: 
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Figure 1: Pie Chart showing the Percentage Distribution of Kerogen Types 

 

 
Figure 2: Bar Chart showing the Percentage Distribution of Kerogen Types 

 

Table 3.2.1 shows a frequency distribution of the 

hydrocarbon type, and it was observed that Oil Type 

I dominates with 71 out of 78 samples, meaning that 

the majority of the samples possess extraordinarily 

good oil-generative capability. Oil Type II and Gas 

Type III have each been found with 3 samples (4%) 

derived from mixed oil-generating and gas-prone 

source rocks. The instances of the source rocks 

generating gas and oil are relatively low, and the Gas 

and Oil Type III is the least occurring category, with 

only 1 sample (1 %). 

The analysis supported the discovery of a preference 

for oil, especially the Type I kerogen, which is 

generally highly mature organic material with 

excellent potential for generating hydrocarbons. The 

samples of Type III and Gas & Oil Type III, which 

denotes the gas-prone and mixed-generative types, 

are assessable, so a small number may suggest few 

exploration opportunities for gas within the dataset 

or the area being analyzed (See Figures 1 and 2). 

 

3.3 Selection of the Best ML Algorithm 

In case of choosing the most suitable algorithm for 

the prediction of the kerogen type, it is required to 

consider the data set’s complexity, the size of the 

dataset, and relations between features. Logistic 

Regression and Ridge Classifier CV are easy and 

performs well for linearly separable set and bears a 

simple interpretation. Relationships between 

features are linear in these methods and that is why 

they do well when the provided relationships are not 

complex, but geochemical data such as kerogen type 

or hydrocarbon potential may not be linear, and thus 

require more complex modeling (Lawal, et al., 

2024). 

Decision tree, KNN and Gaussian Naive Bayes are 

selected for datasets with complex and nonlinear 

correlation. Looking at the strengths, Decision Trees 

are strong in terms of detecting non-linearities and 

feature interaction. However, similar to other model, 

it has high tendency to overfit its data and can be 

reduced by applying some pruning or some form of 

regularization. KNN is better suited to lower 

dimensions and less number of features and the time 

complexity soar, when the volumes are large. 

Gaussian NB is relatively fast during computations, 

but it has a drawback in that it does not make use of 

dependencies between features or attribute values in 

geochemical data sets (He, at al., 2022). 
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Most of the ensemble methods like Random Forest, 

Gradient Boosting, AdaBoost, Bagging, and Extra 

Trees are known for better prediction accuracy for 

geochemical properties like kerogen type, thermal 

maturity and hydrocarbon potential. These methods 

make use of multiple models and hence competency 

results in order to prevent over fitting and promote 

generalization. Random Forest and Extra Trees are 

impressive classifiers for high feature variability, 

they perform equally well and both provide feature 

importance. While AdaBoost and Gradient Boosting 

are designed for applications requiring high 

accuracy as each model corrects the mistakes of the 

previous iteration. However, this may need tuning if 

we do not want to over-fit the models, and to get the 

best for better performance (He, at al., 2022; Wei, et 

at., 2023). 

Kerogen type classification benefits from Support 

Vector Machines (SVM) because it is powerful in 

datasets with high decision boundaries. SVM works 

well with linear and nonlinear separation by using 

kernels; its drawbacks include excessive 

computational costs and weak performance with 

large datasets. However, SVMs are not as suitable 

for extremely large data set because of the high 

computational requirements unless optimized. 

SVMs, however, for well-balanced medium size 

data sets provide high classification accuracy 

(Yeganeh, et al., 2023).  

Specifically for these task, Random Forest and 

Gradient Boosting will often be the most effective 

sources of algorithms because of their performance 

with complex and large nonlinear datasets. Decision 

Trees and SVM are also effective for nominal and 

less extent data sets; while Logistic Regression and 

Ridge Classifier are sufficient for mainly linear 

issues. The last set of algorithms should therefore be 

selected from this last set by comparing the results 

of performance evaluation using some metrics such 

as accuracy, Precision, F1-score, and recall. 

 

3.3.1 Predictive Machine Learning Model for 

Kerogen Type 

Thus, machine learning techniques have a 

significant role in classifying kerogen type, which is 

critical in delineating hydrocarbon generation 

potential in geochemical investigations. By 

tabulating the relationship between geochemical 

data such as total organic carbon, pyrolysis data and 

some chemical properties, a machine learning 

system can accurately predict the kerogen type such 

as Type I, II or III over conventional techniques. 

Some of the classification algorithms include 

Random forest, Gradient boosting and support 

vector machine which handle large multivariate data 

and data with a complex relationship and hence will 

provide better classification rates and analysis. 

In the same way the use of the machine learning in 

kerogen type classification enables one to recognize 

other relatively thin or concealed geological trends, 

which are hardly noticed by means of superior 

statistical methods. For instance, Random Forest and 

Gradient Boosting give feature importance that 

indicates the major geochemical factors influencing 

the type of kerogen in a formation. With the 

progression of the geochemistry discipline, the use 

of machine learning improves the model of choosing 

and assessing hydrocarbon prospects by multiple 

categories of kerogen. 

Table 3.3.1: Assessment of Machine Learning Algorithms used for Kerogen Type 

 

ML Algorithms 

Evaluation Metrics 

Accuracy Precision Recall F1-score 

Logistic Regression Classification 0.8750 0.292 0.333 0.311 

Ridge Classifier CV Classification 0.8750 0.292 0.333 0.311 

K-Nearest Neighbour Classification 0.8750 0.292 0.333 0.311 

Decision Tree Classification 0.9375 0.644 0.667 0.655 

Random Forest Classification 0.9375 0.644 0.667 0.655 

Gradient Boosting Classification 0.9375 0.644 0.667 0.655 

Ada Boost Classification 0.9375 0.644 0.667 0.655 

Bagging Classification 0.9375 0.644 0.667 0.655 

Extra Tree Classification 0.9375 0.644 0.667 0.655 

Gaussian Naive-Bayes Classification 0.8125 0.289 0.310 0.300 
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Support Vector Machine Classification 0.8750 0.292 0.333 0.311 

Source: System Computations (2025) 

The performance analysis of ML techniques for 

kerogen type shows the following principles: 

Logistic Regression, Ridge Classifier CV and KNN 

got an accuracy of 0.8750 but the Recall, Precision 

and F1 Score are comparatively low: 0.333, 0.292, 

0.311. From this it can be inferred that although 

these models have acceptable accuracy, the trade-off 

between the proportion of truly positive samples that 

has been classified correctly (Precision) and the 

number of samples classified as positive that should 

have been classified as such (Recall) is poor. 

Therefore, these models may not be accurately 

useful for activities that demand differentiation of 

types of kerogen with a few number of cases of false 

positive results or negatives. 

The models Decision Tree, Random Forest, Gradient 

Boosting, AdaBoost, Bagging, and Extra Trees 

recorded higher accuracy, specifically, equal to 

0.9375, precision – 0.644, recall – 0.667, and F1- 

score – 0.655. Since more steps remain for final 

classification, these models provide a more accurate 

ratio between true positives and false ones in 

kerogen type classification. The Gaussian Naive 

Bayes (NB) classifier presents lower results in all the 

metrics, therefore, it could be that this algorithm is 

less convenient in this task because of the Naive 

Bayes’ assumption of feature independence. SVM 

also yields same accuracy as that of logistic 

regression with similar low values of precision and 

recall. In general, it can be concluded that the highest 

results in kerogen type classification are given by 

ensemble methods, mostly Random Forest, Gradient 

Boosting, and Extra Trees. 

 

3.4 Feature Importance 

Since we have known which of the classification 

algorithms can be used for predicting kerogen types, 

it is also very important to determine which of the 

feature variables contribute(s) most in determining 

kerogen type by computing their percentage 

contributions and visualization. The following Table 

3.4 shows the results and Figure 3 speaks further on 

the results. 

Table 3.4: Results of Computation of Feature Importance 

 

Measuring 

Parameters 

Variables of Interest 

S1 S2 S3 Tmax HI OI TOC PI S2/S3 S1+S2 

Importance 0.091 0.044 0.173 0.162 0.134 0.175 0.048 0.070 0.064 0.038 

% Contribution 9.1 4.4 17.3 16.2 13.4 17.5 4.8 7.0 6.4 3.8 

Source: System Computations (2025) 

 
Figure 3: Bar chart showing the degree of contributions of each of the feature variables to Kerogen Types 

It is evident from Table 3.4 and Figure 3 that oxygen 

index, carbon dioxide generated through pyrolysis 

and temperature are the first three geochemical 

parameters for determining the extent of kerogen 

types while others have little contributions. These 

results indicate that much attention should be paid to 

those first three parameters. 
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4. Conclusion 

In the present research on geochemical investigation 

of kerogen types at Niger Delta Basin, Nigeria using 

Machine Learning Approach, we have been able to 

thoroughly analyze the datasets and discovered that 

out of eleven commonly used classification machine 

learning algorithms, six of them (Decision Tree, 

Random Forest, Gradient Boosting, Ada Boosting, 

Bagging, and Extra Trees) perform almost equally. 

This is an indication that any of them will give the 

same results when used for predicting the kerogen 

types.  

Thereafter, the study was able to determine the 

contributions of each of the feature variables under 

study and concluded that only three of the features 

have very closed percentage contributions. These 

three are oxygen index (17.5%), carbon dioxide 

generated through pyrolysis (17.3%) and 

temperature (16.2%) respectively. These are the 

additions to the existing books of literature. 
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