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Abstract: 
 

Breast cancer diagnosis is a critical area in medical research, where the challenge lies not only in accurate 

identification but also in managing the inherent complexity of high-dimensional datasets. This paper navigates 

this challenge by exploring dimensionality reduction techniques to enhance diagnostic accuracy. The primary 

objective of this research was to employ dimensionality reduction methods to refine breast cancer diagnosis, with 

a focus on improving accuracy and interpretability. The study investigates the impact of preprocessing techniques 

on a high-dimensional dataset, aiming to uncover meaningful patterns for effective diagnostic models. Starting 

with a dataset including 569 observations and 30 attributes, careful examination reveals imbalances in the dataset 

(63% benign, 37% malignant). To deal with multicollinearity, we use the coefficients of Pearson correlation to 

find and eliminate highly correlated features. Subsequent data transformation, utilizing min-max normalization, 

ensures uniform weighting. Principal Component Analysis (PCA) is then leveraged for comprehensive 

dimensionality reduction. Visualizations through scree plots and bi-plots underscore the efficacy of early principal 

components in distinguishing benign from malignant cases. Our results demonstrate a notable 24% reduction in 

data dimensionality, affirming the process's efficiency. This abstract beckons the exploration of detailed findings, 

emphasizing dimensionality reduction's pivotal role in refining breast cancer diagnosis for more accurate, 

efficient, and interpretable models. 

 

Keywords: High-dimensional datasets, early diagnosis, breast cancer, dimensionality reduction, artificial 

intelligence, and machine learning. 

 

I. Introduction 
 

In 2018, cancer was the second-leading cause of 

death worldwide accounting for about 9.6 million 

deaths (WHO, 2018). Breast cancer, a prevalent and 

fatal form, causes around 2.09 million deaths 

annually, with 70% occurring in low- and middle-

income countries. The urgency to address breast 

cancer arises from its status as the most common 

cancer among women, constituting 25% of all 
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cancer cases. Alarmingly, late-stage presentations, 

inaccessible diagnosis, and limited treatment options 

persist, particularly in low-income countries. Breast 

cancer is a major global health concern, causing 

millions of deaths annually, particularly affecting 

women. The incidence is high, with about 2.1 

million cases reported yearly, contributing to 

approximately 15% of all cancer-related deaths in 

women. Late-stage presentation and inadequate 

diagnostic and treatment accessibility, especially in 

low-income countries, are common issues (Louise 

Wilkinson, 2021). In 2018, Uganda reported 22,000 

cancer-related deaths, emphasizing the dire 

consequences of late-stage diagnoses (Uganda 

National Cancer Institute, 2019). The statistic that If 

found early, 30% of cancer cases are curable 

emphasizes the vital need for preventative measures. 

The mortality rate is exacerbated by late diagnoses. 

Early diagnosis strategies are crucial, aiming to 

increase early-stage identification through improved 

access to breast cancer treatment and effective 

diagnostic services (Tobore Onojighofia, 2019). 

 

The urgency to address breast cancer as a global 

health concern, particularly in low- and middle-

income countries, underscores the critical need for 

innovative and efficient diagnostic approaches. 

Breast cancer, claiming millions of lives annually, 

manifests as a pervasive and fatal disease, 

necessitating a strategic shift in diagnostic 

methodologies. The high incidence of breast cancer, 

constituting a significant portion of all cancer cases 

among women, coupled with persistent challenges 

like late-stage presentations and limited accessibility 

to accurate diagnosis and treatment, amplifies the 

urgency for transformative solutions (Louise 

Wilkinson, 2021). 

 

Computer-aided diagnostic (CAD) systems play a 

vital role in classifying malignant and benign 

cancers, enhancing physician performance by 

reducing misdiagnoses and diagnosis time 

(Chhatwal, 2010). Machine learning (ML), a subset 

of artificial intelligence, has been extensively 

employed in cancer detection and diagnosis, 

utilizing various classification algorithms. Despite 

technological advancements, challenges persist, 

especially in low-income countries. AI, coupled 

with Electronic Medical Records (EMRs), presents 

a transformative potential for healthcare services 

(Blümel et al., 2020). However, the applicability and 

success of ML in low-resource settings, including 

low-income countries, are underexplored. The need 

for accurate diagnostic tools in resource-poor 

environments is evident, and AI applications, such 

as Natural Language Processing (NLP), are already 

making strides in guiding cancer treatments 

(Chaurasia et al., 2018). The contextual background 

recognizes the potential of ML in reshaping 

healthcare delivery, emphasizing the need for 

efficient and accurate diagnostic tools in diverse 

settings (Blümel et al., 2020). Also, ensemble 

learning, a promising approach, combines multiple 

classifiers to improve predictive performance 

(Rokach, 2010).  

 

 Breast cancer diagnosis faces challenges posed by 

high-dimensional datasets, necessitating advanced 

techniques for effective model development.  

The challenge in breast cancer diagnosis is 

exacerbated by the multitude of features 

contributing to the determination of malignancy or 

benignity. Human interpretation, often subjective 

and dependent on personal experience, poses 

limitations in accurately representing the facts, 

especially as the number of samples increases.  

In the backdrop of the escalating impact of breast 

cancer, the adoption of CAD systems and ML holds 

promise. However, the inherent complexity of high-

dimensional datasets poses a substantial hurdle. The 

multitude of features contributing to malignancy or 

benignity demands a nuanced approach to enhance 

accuracy and interpretability. Traditional diagnostic 

methods, often reliant on subjective human 

interpretation, falter in the face of increasing sample 

sizes and diverse datasets. CAD systems, are 

designed to reduce misdiagnosis and expedite the 

diagnostic process. However, the effectiveness of 

these systems is contingent on overcoming the 

dimensionality of the data, making the case for 

advanced computational techniques (Chhatwal, 

2010). 

 

High-dimensional datasets not only strain 

computational resources but also risk introducing 

noise and irrelevant features, potentially hampering 

the accuracy of diagnostic models (Ricvan, 2018). 

By reducing dimensionality, the focus shifts to the 

most informative features, enhancing the efficiency 

and interpretability of the diagnostic process. The 

significance of dimensionality reduction is 

magnified by its potential to address late-stage 

presentations and limited accessibility to accurate 

diagnosis, particularly in resource-poor 

environments (Vogelstein, 2021). By streamlining 

datasets and uncovering meaningful patterns, 

dimensionality reduction techniques offer a pathway 

to more efficient, accurate, and accessible diagnostic 

models. The exploration of these techniques aligns 

with the transformative potential of artificial 

intelligence in reshaping healthcare delivery. 

 

Our study therefore embarked on practical 

experimentation to uncover the intrinsic importance 

within the capabilities of techniques used in 

dimensionality reduction towards breast cancer 

diagnosis (Akampurira, 2022). 

II Research Methodology: 
 

A dataset comprising 30 features and 569 

observations related to breast cancer cases. The 

dataset exhibited inherent complexities, including an 
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imbalance with 63% benign and 37% malignant 

cases. The diverse nature of the dataset posed a 

challenge in developing accurate diagnostic models. 

 

Data Preprocessing: 

To address the issue of multicollinearity, Pearson 

correlation coefficients were utilized to discern and 

eliminate highly correlated features. This procedural 

step was pivotal in fortifying the resilience of 

subsequent analyses. Following the correlation 

analysis, min-max normalization was implemented 

to ensure the uniform weighting of features, thereby 

alleviating the impact of disparate scales on the 

model development process. 

 

Detection, neutralization, and or removal of 

Outliers:  

Outliers can be delineated as anomalous data or 

values that deviate from the norm in comparison to 

the majority of observations. Typically stemming 

from measurement errors, coding discrepancies, or, 

at times, representing naturally occurring abnormal 

values, these non-representative samples wield 

considerable influence on later model outcomes. 

Consequently, a meticulous examination of the data 

was conducted to identify and either neutralize or 

expunge outliers, contingent upon their perceived 

impact. 

 

Handling missing data 

The most straightforward recourse for addressing 

missing data involves downsizing the dataset by 

discarding all samples with incomplete values. This 

approach is particularly applicable to expansive 

datasets where missing values constitute a negligible 

proportion relative to the entirety of the dataset. 

Alternatively, if the researcher opts against 

discarding samples with missing values, efforts must 

be made to impute suitable values in their stead. 

Normalization 

There are several approaches to data normalization, 

such as Z-score normalization, Min-Max 

normalization, and decimal scaling. Because the 

former works with most of the methods used in the 

normalization process, it was used in this 

investigation. 

 

Data reduction employing feature selection and 

extraction 

In order to determine the aspects of the dataset's 

relevance for the result or target variable and their 

interrelationships, the researcher dug further in 

dataset during this phase. Features that were judged 

irrelevant were removed, collinearity tests were 

carried out, and features with a high degree of 

correlation were carefully handled. Furthermore,  

 

 

Dimensional space was reduced by the application 

of Principal Component Analysis (PCA), a flexible 

method for lowering the dimensionality of data and 

fine-tuning feature selection criteria. 

 

The researcher used Principal Component Analysis 

(PCA) for this research even though there are other 

methods for reducing dimensionality, such as the 

relief approach, entropy-based feature ranking, Chi 

Merge, value elimination, and case reduction. This 

is because PCA employs procedures that are 

straightforward but comprehensive. The dataset, 

which is represented by vector samples, was 

changed into a new collection of vector samples with 

generated dimensions using PCA. 

 

III. Results and Discussion: 
 

Dataset: 

The Wisconsin Breast Cancer Database (WBCD) 

dataset, which is often used in research studies, was 

employed in this study. The feature values derived 

from a digital picture of a Fine Needle Aspirate 

(FNA) of a breast mass make up the WBCD dataset 

for breast cancer diagnosis. The attributes of the cell 

nuclei shown in the picture are described by these 

features. The UW CS file transfer protocol (FTP) 

server, located at ftp.cs.wisc.edu/cd math-prog/cpo-

dataset/machine-learn/WDBC, is another way for 

you to access this database. It is advised that data 

science initiatives make use of this publicly 

available standard dataset. 

The data included different attributes including ID 

number, Diagnosis (M = malignant, B = benign), 

and For each cell nucleus, the following ten real-

valued features are calculated: "compactness 

(perimeter^2 / area - 1.0), concavity (severity of 

concave sections of the contour)," "concave points 

(number of concave portions of the contour)," 

"texture (standard deviation of gray-scale values), a 

perimeter, area, smoothness (local variation in 

radius lengths)," and symmetry, fractal dimension 

("coastline approximation" - 1)." 

 

The mean, average, standard deviation, and "worst" 

or worst (mean of the three most significant values) 

were also computed for each image, resulting in a 

total of 30 features. The Mean Radius, for example, 

is field 3, the Radius SE is field 13, and the Worst 

Radius is field 23. Every feature value has four 

meaningful digits recorded. The downloaded dataset 

was imported and stored into the RStudio, an 

integrated development environment (IDE) for R, 

which provides free and open-source tools for R 

programming and statistical modeling and is an 

enterprise-ready professional software for data 

science. 

We employed the function view () to quickly glance 

at our data in the manner shown below. A glance at 

the imported data (Table 1) showed that our data is 

made of 32 columns as features (variables) and 569 

rows as examples. No parameter had spaces in their 

names, and our data was rather clean which would 
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have been a naming convention that is not 

compatible with many of the R procedures we would 

implement.  

We also used head() to examine the data's structure, 

which provides a thorough picture of the 

information in terms of the feature data structures, as 

follows; 

 

 

Table 1: Data import view in R studio 

 
 

Table.2:   Data head  Preview

 
 

 

The bulk of the data properties were kept in double-

precision floating-point (dbl) and character (chr) 

formats, based on the results shown in Table 2. 

There were 569 components or instances in the large 

32-column array that made up the dataset. Among 

these are a 'id' column and labels designating the 

target values as 'B' for Benign and 'M' for Malignant. 

The data was initially preprocessed  

to prepare it for exploration and visualization 

including rearranging the features (columns), 

ordering the columns, removing unnecessary 

features like “id” and replacing the diagnosis labels 

with full names.  

Table 3: diagnosis label redefined

  

 
 

Subsequently, we removed characteristics such as 

the ID variable that are not needed at all for data 

modeling. We observed that the target variable's 

labels, malignant or non-cancerous, were, 

respectively, m and b. For easy understanding of the 

data, we need the full names of the diagnosis field 

and therefore replaced the labels as malignant and 

benign as in Table 3. 30 features or predictors and 

569 observations are visible in the raw data count 

following the first round of preprocessing. 

Furthermore, we observe that every predictor has 

constant outcomes for observations as well as no 

values that are absent. We observed that every 

observation was documented as a series of decimal 

numbers. Also, a quick count of cancer rates in the 

data set was done.   We quickly counted the samples 

in our dataset to confirm their quantity and their 

appropriate categories: 
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Table 4: cancer rate count 

Benign malignant 

      357  212 

 

Table 4 above shows the target parameter for 

diagnosis, which may be benign or malignant. The 

tables show that out of 569 observations, 357 were 

non-cancerous observations or benign, and 212 were 

cancerous or malignant. We further checked for 

balance in our response (target) variable, which  

 

Table 5: Response variable 

 

Percentage is the diagnosis, in percentages returns as 

in the table 5.  

  

The table 5, above shows that the response variable                     

Fig 1: Visualizing correlations with Corr plot. 

 

Mathematics, two random variables, x and y, have a 

tends to benign and malignant are only 37% of the 

entire dataset. This showed that 37% of the patients 

were diagnosed with cancerous cells. The balance 

check therefore shows that the data is a bit 

unbalanced.  

 

Inspection for multicollinearity 

A multicollinearity analysis was performed in an 

attempt to identify any correlation between the 

variables. Most machine learning methods require 

that the variables that predict outcomes be 

independent of each other in order for the evaluation 

to be deemed robust. This is why the researcher 

carried out a study that led to the multicollinearity's 

identification and removal. We used Pearson 

correlation to search for relationships between the 

features in our dataset. 

The Pearson correlation coefficient (ρ) can be 

expressed in the following way.  

ρ𝑥,𝑦 =
𝐶𝑜𝑣(𝑥, 𝑦)

σ𝑥σ𝑦
 

In this case, y is the standard deviation, σx is the 

deviation from the mean of x, and Cov (x y) is the 

covariance of x. The above is accomplished in R 

using the cor() function as follows: 

 

Fig 1: Visualizing correlations with Corr plot 

In Figure 1, the size and color intensity of the circles 

indicate the correlation strength, or the total amount 

of the correlation coefficient among two variables. 

  benign  0.63  

malignant  0.37  
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Positive correlates are blue, whereas the negative are 

red. The graph highlights the presence of linked 

variables; concavity worst and points worst are two 

examples of such relationships; these and other 

examples were covered in later procedural phases. 

This graphical representation undeniably attests to  

 

Figure 2: Correlation Plots for Dataset Features 

The existence of variables with correlations. Any 

component in our visual representation that registers 

a value of 0.9 or above indicates an exceptionally 

strong positive association, according to Pearson 

correlation coefficients, which range from -1 to 1. 

On the other hand, features with a correlation of -0.9 

or less indicate a strong negative association; hence, 

their elimination is required for improved model 

performance. Three prominent instances of 

characteristics with strong positive correlations are 

texture_mean, texture_worst, and Arese. The next 

section outlines the methods that the researcher used 

to examine strongly linked data using the caret 

package. 

 

Checking for multicollinearity among the features 

Through the aforementioned correlation analysis, a 

nuanced elucidation of the interrelationships among 

features was attained. The correlation coefficients 

delineated the extent to which certain features 

exhibit a pronounced interdependence, thereby 

potentially compromising the robustness of our 

modeling outcomes. Consequently, this facilitated 

the researcher in identifying and subsequently 

mitigating such correlations, notably exemplified by 

features such as area mean and radius mean. To 

address this, the researcher opted for the 

implementation of principal component analysis, a 

strategy expounded upon in subsequent sections. 

Prior to delving into this analytical approach, a more 

granular examination of correlations was conducted 

using scatter diagrams, detailed in  

 

The visual representation of correlation plots offered 

insights into the interconnectedness of distinct 

features. It is imperative to underscore that 

correlation, as depicted herein, is not tantamount to 

causation; rather, it serves as an illustrative indicator 

of observed associations. Noteworthy patterns 

emerged, elucidating a robust positive correlation 

among radius mean, area mean, and perimeter mean. 

Furthermore, favorable relationships were found 

between the radius mean the concavity mean and the 

compactness mean. The intrinsic skewness in the 

data was clarified by the scatter diagrams, which 

also disclosed the distributional properties of the 

features. 

In an attempt to mitigate the impact of strongly 

correlated components, the researcher employed the 

discover correlation () function from the caret 

package. Using a heuristic technique, this function 

consistently identified variables for deletion with a 

Pearson's correlation coefficient equal to or better 

than 0.9. The function to remove characteristics with 

such high correlations was then run by the 

researcher, and a refined dataset known as 

bc_data_corr1 was produced. Wisc_bc_data %> 

bc_data_corr1 <- %-find Relationship (bc_data, 

cutoff = 0.9)) is selected. > n col (corr1, bc) [1] 22. 

Following the aforementioned change, the dataset 

has 10 variables and contains just 22 predictors 

(bc_data_Corr1).  

 

Normalizing our data 

The researcher undertook a consequential measure 

in the form of data normalization, a pivotal 

procedure primarily executed to mitigate bias 

stemming from the incongruity in the significance of 

absolute quantities compared to their relative 

counterparts, attributable to variations in scale. The 

normalization process was instrumental in ensuring 

parity among variables, thereby conferring uniform 

weight to each during the modeling phase. 

 

Employing the min-max normalization method, we 

systematically altered a feature to confine its values 

within the spectrum of 0 to 1. The normalization of 

a feature adhered to the subsequent formula: 

𝑋𝑛𝑒𝑤 =
𝑋 −𝑚𝑖𝑛(𝑋)

max(𝑋) −min⁡(𝑋)
 

In essence, the formula divides by the range of X 

after subtracting the lowest value of X from each 

instance of feature X. The resultant normalized 

feature values can be thought of as the proportion of 

difference, on an integer ranging from 0 to 100, 

where the starting value falls between the lowest and 

maximum values. A normalization function was 

devised to standardize our data onto a uniform scale. 

Subsequently, this normalization function, denoted 

as "normalize ()," was applied to columns 2 through 

30 (excluding the diagnosis variable) in the bc_data 

data frame. The output, converted into a data frame, 

was then assigned to the variable bc_data_norm. The 

"_norm" suffix is utilized solely as a mnemonic, 

underscoring the fact that the values in the dataset 

have undergone normalization. This method 

facilitated the creation of a standardized framework, 

fostering equitable treatment of variables and 

enhancing the robustness of the modeling process. 

 

Dimensionality lessening through Primary 

component examination 

Dimensionality lessening is a sophisticated 

procedure entailing the contraction of the feature 

space, or dimensions, within a dataset before 

subjecting it to model training. The investigator 

undertook dimensionality reduction with the 

primary objective of curtailing the temporal and 

storage requisites for data processing. This endeavor 

sought to enhance data visualization and refine 

models. 
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Interpretability, and circumvent the deleterious 

effects of the curse of dimensionality. 

Fundamentally, the purpose was to excise 

superfluous and duplicative data, thereby 

diminishing computational costs and mitigating the 

risk of overfitting. The principal methodologies 

encompassed in this pursuit are feature selection and 

feature extraction. 

 

When it comes to characteristic picking, a selected 

group of variables is carefully chosen to produce a 

small number of features, free from redundant or 

inconsequential attributes, which can be expunged 

without significantly impacting model performance. 

In this instance, the variable 'id' was expunged due 

to its lack of relevance in the modeling process. 

While alternative methodologies such as the F 

selection method exist, capable of removing less 

influential features, a deliberate decision was made 

to abstain from further feature removal in our 

dataset. 

 

Table 6: Summary of PCA results 

In light of the potential elimination of some 

correlated  

 

Figure 2: Correlation Plots for Dataset Features 

however educational elements The investigator's 

task was to use the feature extraction approach to 

combine these related features into one entity 

through the selection of features procedure. It is 

possible to use feature extraction and projection 

interchangeably entails the application of 

mathematical functions to effectuate the 

transformation of high-dimensional data into lower 

dimensions, with the newly derived features 

supplanting their original counterparts. The 

preeminent methodology for such vibrant feature 

extraction is Principal Component Analysis (PCA). 

 

As expounded earlier, PCA constitutes a method for 

extracting linear features from data initially stored in 

a higher-dimensional space, using a reduced-

dimensional space. With the use of this method, the 

researcher was able to carry out an analysis that 

would maximize the variation of data in its low-

dimensional presentation by mapping the data onto 

a lower dimension. The proclivity towards 

employing PCA stemmed from its unparalleled 

efficacy in scenarios where datasets exhibit a 

profusion of features coupled with inter-feature 

redundancy or correlation—a circumstance 

substantiated by our antecedent investigation into 

multicollinearity within the dataset. 

 

Consequently, to excise superfluous features 

characterized by redundancy, PCA was enlisted to 

transmute high-dimensional data into lower 

dimensions by condensing features into a concise set 

of principal components, aptly capturing the 

majority of the variance inherent in the original 

features. 

The process was done using the following steps; 

1. Finding the mean vector 𝜇 = ⁡
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1  where 

𝑥𝑖 is the number of points, and shows the data 

points. 

2. Calculating the matrix of covariance 𝐶 =

⁡
1

𝑛
∑ (𝑥𝑖

𝑛

𝑖=1
− 𝜇)(𝑥𝑖 − 𝜇)𝑇 

3. Calculating the associated eigenvalues and 

eigenvectors, φ. 

4. Selecting and ranking the highest k 

eigenvectors. 

5. Construct a n x k matrix of dimensional 

eigenvectors, U. In this case, k denotes the 

number of eigenvectors and n represents the total 

number of original dimensions.  

6. Convert the collected samples to the new 

subdomain in the formula. 𝑦 = 𝑈𝑇 . 𝑥 

 

An overview of the PCA findings 

The results of the PCA implementations are 

summarized in the table above. As seen in Table 6, 

the first five PCs account for 84.73% of the variance, 

while the first 15 components account for 98.64% of 

the variance. 

 

Eigen-values and component importance using 

the covariance matrix 

The outcomes of the primary components were 

obtained by using the predict function: Obtain the 

Eigenvalues of the correlation matrix to further 

highlight the significance of the individual parts. 

Table 7: Eigenvalues using covariance matrix 

 

Table 7 indicates that the components with tiny 

eigenvalues exhibit low fluctuation, indicating a 

minimal impact on the target projection or the 

diagnosis's outcome values. Using a scree plot, we 

further display the principle to comprehend the 
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component importance as follows:

 
Fig 3: scree plot to visualize the relative importance 

of principal components 

The scree plot above shows a detail of component 

importance: the y-axis is the eigenvalue which 

shows the importance of the principal components. 

The figure shows the first ten principal components 

and their contribution towards the prediction of the 

target variable. To further understand this, we used 

biplots to offer a detailed view. To find out how data 

and variables are mapped regarding the principal 

component, we used a biplot, which plots data and 

the projections of original features. Figure 4, shows 

that the first two components greatly managed to 

separate the diagnosis well. PC1 shows a greater 

influence on discrimination between benign and 

malignant. However, we want to get a more detailed 

analysis of what variables are the most influential in 

the first two components. We also wanted to explain 

the difference between malignant and benign 

tumors. So we added the response variable 

(diagnosis) to the plot and see if we can make better 

sense of it: 

  

                      Fig 4: First 2 PCA features 

There is a clear distinction between tumors that are 

malignant and benign in the first two components. 

This indicates that the data is suitable for use with a 

classification model, like discriminant analysis. The 

notable difference found between the 'Malignant' 

and 'Benign' classifications, according to around 

63% of the variation in a 30-dimensional dataset, 

highlights the possible effectiveness of using just 

two perspectives in a story. Although these 

dimensions might produce very accurate estimates, 

dealing with higher-dimensional data is difficult but 

also captures a larger degree of variability. 

Remarkably, we ascertain that over 60% of the 

variance can be elucidated by employing solely the 

initial two components. The variance of each 

statistic from its average is explained by 

representing the variables in question as vectors or 

arrows, where the origin represents the mean value 

and the data points or sampling identifiers indicate 

the scores. Notably, the average is positioned at a 

zero value, serving as the centroid in the data matrix. 

The length of the arrows directly correlates with 

variability, offering a proportional depiction. 

The angular disposition between two arrows 

symbolizes the correlation between variables, with 

acute angles signifying robust positive correlations 

and greater obtuse angles indicative of negative 

correlations. To delve deeper into these 

relationships, corrplots were employed, visually 

portraying the trajectory of component variability. 

The ensuing visualization serves to explicate the 

significance of variables in the overall analysis. 

 

Fig 5: a correlation plot of the first five principal 

components 

 

The figure above shows the application of PCA and 

determining the importance of components using the 

bc_data_corr1 dataset where highly correlated 

variables were removed. The results show how the 

first component performs very well on the data. The 

importance decreases as we move components from 

PC2 to PC5.  

 

PCA Using our normalized dataset: We also used 

our normalized dataset to perform the PCA as 

follows. We do this as a final analysis to determine 

which features are more important and create a 

subset of the original dataset that we can use for the 

next steps in the modeling phase. The Summary of 

In the PCA on the normalized dataset, a test of the 
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claim that the five parts are sufficient results in a 

mean item level of complexity 2.2. The fit is based 

on off-diagonal values of 0.99, with an experimental 

chi-square of 912.23 and a probability of less than 

3e-64. The root means square of the residuals 

(RMSR) is 0.04.   

 

The total weight of the main components is shown 

by the SS loadings: PC1 weighs 13.28, PC2 weighs 

5.69, PC3 weighs 2.82, PC4 weighs 1.98, and PC5 

weighs 1.65. The overall difference  

 

           Fig 6: PCA using cumulative variance 

 

According to the figure, 85% of the total variation 

explained is covered by the first five PCs. The 

analysis's conclusions showed that the data's 

significant variance can be explained by principal 

component one. According to the findings, the first 

six main components account for the majority of 

variance. Using the scree plot with the cut-off line, 

we were able to further illustrate the feature 

extraction.  

 
Scree plot showing the proportion of variations 

explained in Figure 7 

The statistical importance of the main elements and 

the variance that is explained are shown in Figure 7, 

where PC1 makes up 44.3% of the total variance 

described and the first five elements account for 

85% of the variation explained. The first ten primary 

components explain 95% of the variance. 

 

Discussion: 

The exploration and preparation of the dataset for 

breast cancer diagnosis showcased a meticulous 

process aimed at ensuring the data's quality and 

relevance for subsequent modeling phases. By 

employing widely used datasets, such as the 

Wisconsin Breast Cancer Database (WBCD), and 

following established guidelines for data science 

(Masters, 2020), the study laid a robust foundation 

for meaningful analysis. 

 

The initial dataset, comprising various attributes 

such as radius, texture, perimeter, and more, 

underwent thorough preprocessing steps within the 

RStudio environment. This included rearranging 

features, removing unnecessary columns like the ID, 

and ensuring proper labeling of the diagnosis 

variable (Sultan, 2023). a thorough examination of 

the data structure, the normalization procedures, and 

a malignant or benign response variable equilibrium 

check provided essential insights into the 

characteristics of the dataset (Nwanganga, 2020). 

One of the significant challenges addressed during 

the data preparation phase was the identification and 

handling of multicollinearity. The study recognized 

the importance of examining correlations among 

features to ensure the robustness of the subsequent 

machine-learning models (Sultan 2023). The use of 

correlation coefficients from Pearson and visual aids 

such as scatter graphs and correlation plots allowed 

for a complete understanding of feature correlations 

(Masters, 2020). 

 

Principal Component Analysis (PCA), one of the 

dimensionality reduction approaches introduced, 

showed how to strategically address the dataset's 

high dimensionality (Kantardzic, 2020). The study 

effectively decreased the number of indicators while 

keeping a significant amount of the original variance 

by methodically converting the data set to a lower-

dimensional subspace. The screeplot and biplots 

provided valuable insights into the importance of 

principal components, offering a roadmap for 

subsequent modeling steps (Sultan, 2015). 

 

The discussion of results underscores the 

significance of these preparatory steps in shaping the 

subsequent phases of the study. The dimensionality 

reduction not only addresses computational 

challenges but also enhances the interpretability of 

the dataset, crucial for effective modeling 

(Kantardzic, 2020). The choice of PCA as a feature 

extraction method aligns with its suitability for 

datasets with redundant and correlated features, as 

identified through correlation checks (Nwanganga, 

2020). 

 

The examination of eigenvalues further emphasized 

the importance of each principal component in 

contributing to the dataset's variability (Masters, 

2020). A clear grasp of the declining returns as a 
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percentage of variance explained by other variables 

was made possible by the visual representation of 

component importance using scree-plots 

(Akampurira, 2022). 

 

IV Conclusion 

 
The researcher was able to produce data from the 

data preparation and exploration phase that can be 

accessible from any data modeling program, such as 

IBM SPSS, Stata, Excel, R, etc. Effective data 

cleaning allowed us to generate clean data free of 

unsalvageable things. By reorganizing and rescaling 

our features, we produced subsets of data that we 

used in the following steps. We were able to reduce 

our highly dimensional dataset of 30 predicting 

variables to 22 predicting variables with 

correlational removal to remove highly correlated 

features. We also managed to use PCA for feature 

extraction and reduced our data dimensionality by at 

least 24% maintaining the reliability of the predicted 

features. The resulting datasets were used in the next 

phase of model building and evaluation. 
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