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Abstract 

An investigation was conducted on a steady magnetohydrodynamic (MHD) free convection flow 

of a Casson fluid across a parallel vertical plate immersed in a porous medium with viscous and 

magnetic dissipation. In addition, the energy equation contains terms for radiational heat flow, heat 

injection, and suction. The perturbation approach provides an analytical solution to the governing 

nonlinear partial differential equations underlying this phenomenon. The numerical approach in 

the Maple program was used to verify the correctness of the outcomes produced by the perturbation 

technique. The Grashof and Prandtl numbers, Casson fluid, magnetic field, and porosity 

parameters as well as radiation parameter, and heat injection/suction parameter impact on the flow 

is discussed graphically. Skin friction coefficient and Nusselt number are tabulated for a range of 

magnetic and radiative parameter values. The other physical factors listed above accelerate the 

fluid velocity, but the magnetic field decreases it. Furthermore, the wall shear stress and heat 

transfer were significantly impacted by the magnetic and radiative factors. 

Keywords: Convection flow with MHD, fluid from Casson, Radiative heat flux, Viscous  

                     dissipation, Heat transfer, Ohmic heating, Perturbation technique 
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I. INTRODUCTION 

This research has caught the interest of many 

academics because of the numerous uses of 

the flow of non-Newtonian fluids flow in 

science and engineering. Although fluids can 

either be Newtonian or non-Newtonian. The 

non-Newtonian fluids have wide range of 

commercial and practical applications, 

particularly in the processing of materials 

that contain blood, honey, lubricating oil, and 

meals. When non-Newtonian fluid is flowing 

through porous medium, several of these 

industries are challenged by the magnetic 

effect. 

Recent advances in MHD research have 

cleared the path for the use and creation of 

several industries including MHD power 

generators and the cooling of nuclear reactors 

which also includes a heat exchanger. The 

problem of irrigation, heat storage beds, 

paper industries, petroleum operations, and 

the production of polymers are a few 

examples of the uses of MHD of non-

Newtonian fluids in porous media.  

Casson fluid, which acts like an elastic solid 

and prevents flow in the presence of modest 

shear stresses, is obviously one of the 

instances of non-Newtonian fluids. In order 

to determine the flow behavior of suspended 

pigment oil, Casson developed the Casson 

fluid model in 1959. The magnitude of the 

Casson fluid's shear stress must be greater 

than the yield shear stress in order to 

determine the fluid's flow. The two-phase 

suspension used in the Casson model 

demonstrates how the solid and liquid phases 

interact in a beneficial way. 

Example of Casson fluids is tomato paste, red 

blood cells, fibrinogen, proteins, and globulin 

among others. Chemicals used in the 

manufacture of pharmaceuticals, paints, coal, 

synthetic lubricants, and China clay all 

employ Casson fluid. Makanda et al. (2015) 

recently looked at how radiation affected 

MHD free convection flow from a cylinder 

with partial slip. It was shown that the 

existence of the velocity slip factor was 

amplified by the decline in velocity profile 

brought on by the increases in magnetic field. 

Talha et al. (2021) considered an unstable 

MHD flow model. They looked at the fluid 

condition at ramped temperature and 

velocity, and they presented a visual 

comparison of the solutions for ramped and 

constant conditions at the wall. Khalid et al. 

(2015), explored a Casson fluid flow across 

vertical plate that was oscillating while 

maintaining a constant temperature without 

the use of MHD. The outcomes met the 

necessary criteria for non-Newtonian fluid 

and reduced the Newtonian fluid solution to 

a special case, satisfying the relevant 

conditions for that fluid type. With 

consideration of viscous dissipation in two 

dimensions, Hammad et al. (2020), used a 

nonlinear stretching surface to show the 

impact of heat absorption or suction on the 

MHD boundary layer flow of Casson 

Nanofluid. Hymavaths and Sridhar (2016) 

used the Keller box approach to examine the 

effects of MHD Casson fluid flow over a 

porous stretched sheet in the presence of 

chemical processes. They observed that when 

the suction parameter rose, the concentration 

profile rapidly fell in comparison to the 

fluid's velocity. In a rotating permeable 

microchannel with wall slip and hall current, 

Eegunjobi and Makinde (2020) looked at the 

intrinsic irreversibility of Casson fluid flow. 

They discovered that the rate of entropy 

creation is enhanced by fluid rotation and 

velocity slip but decreases with an increase in 

magnetic field strength. Rao and Sreenadh 

(2017), looked at the flow of Casson fluid in 

constant two-dimensional MHD-free 

convective boundary layer over a permeable 

stretched surface. Thermal radiation as well 
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as chemical reactions, assuming that 

temperature, wall concentration, and 

stretching velocity would all change 

according to a particular exponential form.  

In the present work, we investigate the steady 

Casson fluid flow of MHD over a parallel 

vertical plate positioned in a porous medium 

with viscous and magnetic dissipation. The 

nonlinear differential equation that resulted 

from the study was converted into an 

ordinary differential equation by utilizing the 

regular perturbation approach, and it was 

then analytically solved. 

Heat transfer study provided an example of 

the value of radiation flux and heat injection 

or suction. The skin friction, Nusselt number 

and other thermophysical parameters were 

provided. The result of non-linear equations 

was solved analytically and the effects of 

various thermophysical parameters were 

shown graphically. 

The constant MHD-free convective flow of 

Casson fluid over a parallel vertical plate set 

in porous media with viscous and magnetic 

dissipation along with radiation effects were 

investigated. We chose a certain coordinate 

with the electrically non-conducting plates' -

axis running parallel to them and the -axis 

perpendicular to them. Since the flow's 

Reynolds number is so low, the impact of the 

induced magnetic field is disregarded. This is 

accurate because partly ionized gases have a 

very low magnetic Reynolds number. In 

compared to the radiative heat flow normal to 

the plate, the radiative heat flux along with 

direction of the plate was disregarded. Since 

there was no consideration of an electric 

field, the fluid's polarization impact was also 

disregarded. Below is the Cauchy stress 

tensor  
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where xye= is the 
xhyx ),( component of the deformation rate,  and c  are the deformation rate 

and non-Newtonian [parameter respectively, yp  is yield stress of the fluid and   is the plastic 

dynamic viscosity of non-Newtonian fluid. When deriving the governing equation, we assume 

that; 

 (i) the two plates are stationary, (ii) the flow is steady incompressible unidirectional and one 

dimensional, (iii) the fluid is non-Newtonian and free convective with viscous and magnetic 

dissipation taken into consideration in energy equation. These assumptions resulted to the 

following set of nonlinear differential equation 

 0=




y

v
i.e. 0vv −= (constant)        (2) 
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y

p
=




0 is independent of y         
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with the following boundary conditions  

 wTTu == ,0
 
at 0=y                                                                (5) 

 
→→ TTu ,0  as →y  

where u and v are velocities in  x and y directions, T -temperature, yc p/2 =  is the 

Casson parameter,  -fluid density, g is the acceleration due to gravity, 
T represent the 

coefficient of thermal expansion,  -the fluidelectrical conductivity, k and  are permeability and 

porosity of the fluid respectively, 0B is the magnetic flux density, pc is the specific heat capacity, 

T is the free stream temperature, wT is the wall temperature, 
rq - heat flux, 0Q -heat absorption 

coefficient and subscripts w  and   are called surface and ambient condition respectively. 

The radiactive heat flux is obtained from Rosseland approximation as  
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where
1 represent Stefan-Bultzman constant and 

2k  is the absorption coefficient. Using (6) 

simply mean that we consider optically thick fluid in our analysis. 

 
434 34  − TTTT          (7) 

Equation (6) is widely apply in computational fluid dynamics (CFD) when it involves radiation 

absorption problem in formulation of term 4T as a linear function. 

Substituting (6) and (7) in (4), we obtain 
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Introducing the non-dimensional variables 
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Substituting (9) into (3) and (8) and dropping “-“, we obtained the following non-dimensional 

equations 
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The corresponding boundary conditions in dimensionless form are 

 1,0 == u  at 0=y         (12) 

 0,0 →→ u  as →y  

II METHOD OF SOLUTION 

In an incompressible fluid flow, 10  Ec since the flow due to the Joule dissipation is super 

imposed on the main flow. 

We apply the perturbation technique by assuming the following  
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Putting (13) into equations (10) – (12) and equating the coefficient of zeroth and first order base 

on the power of Ec and neglecting the term )( 2EcO+ , we have the following ODE: 
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with the boundary condition  

 :0=y 00 =u ,  :1→y 00 =u        (15) 
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 :0=y 10 = ,  :1→y 00 =        (17) 
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with the boundary condition  

 :0=y 01 =u ,  :1→y 01 =u         (19) 
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with the boundary condition  

 :0=y 01 = ,  :1→y 01 =         (21) 
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The solution of (14), (16), (18) and (20) with boundary condition (15), (17), (19) and (21) 

respectively are 
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Furthermore, when 5........,2,1=n , we obtained 
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Hence 
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The skin friction factor )( at the plate 0=y is given as 
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The Nusselt number )(Nu which is the rate of heat transfer based on Fourier’s law of heat 

conduction is given as  
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III RESULTS AND DISCUSSION 

When heat is transferred from the two plates 

into the boundary layer by free convection 

current, the numerical evaluation and 

approximate analytical results of the problem 

were discussed and presented graphically in 

Figures 1–8. Figure 1 narrate different values 

of  for velocity profile. The fluid increases 

due to the plasticity of Casson fluid. In Figure 

2, increase in the value of Gr  due to 

enhancement in the buoyance for 

Figure 3 depicted that velocity profile 

increases with increase in radiation parameter 
Ra . This is because increase in velocity at 

the boundary layer decreases the boundary 

layer thickness. Figure 4 revealed that 

increase in magnetic parameter M  reduces 

the velocity profile due to  the presence of 

Lorentz force that decelerate the flow. 

Figure 5 depicts that increase in the value of

K have a considerable effect on the fluid 

permeability which consequently reduced the 

porous medium which allow the flow 

velocity to be increased, thereby heighten the 

velocity field. 

It was shown in Figure 6 that as Pr  increases, 

the temperature profile decreases. This is 

because thermal conductivity of the fluid 

reduces with increase in Pr  thereby reduces 

the thermal boundary layer thickness. The 

temperature profile for various value of Ra  

was presented in Figure 7. It was revealed 

that increase in Ra  results to decrease in the 

boundary layer thickness which reduces the 

value of heat transfer in the presence of 

thermal forces. Similarly, in Figure 8, the 

effects of increasing in 
1Q  results to increase 
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in temperature profile due to rises in the 

amount of heat injection. 

 

 

 

 

 

 

                       Figure 1.     Graph of the velocity profile for various value  when    

                                      0.2,5.0,71.0Pr === MK 0.2,0.2 1 == QGr  and  5.0=Ra  

  

 

 

 

 

 

 

 

 

 

Figure 2.  Graph of the velocity profile for various value Gr  when  

                                              0.2,5.0,71.0Pr === MK  0.2,6.0 1 == Q and 5.0=Ra  
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                              Figure 3.   Graph of the velocity profile for various value Ra  when   

 

                                0.2,5.0,71.0Pr === MK , 0.2,6.0 1 == Q and 0.2=Gr  

 

 

 

 

 

 

 

 

 

 

 

 

 

             Figure 4.  Graph of the velocity profile for various value M  when    

                 0.2,5.0,71.0Pr === GrK , 0.2,6.0 1 == Q and 5.0=Ra  
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Figure 5.  Graph of the temperature profile for various value Pr  when    

       0.2,0.2,5.0 === GrMK   0.2,6.0 1 == Q and 5.0=Ra  

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

                               Figure 6.  Graph of the temperature profile for various value Ra   

                                   when 0.2,0.2,5.0 === GrMK , 0.2,6.0 1 == Q and 71.0Pr =  
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    Figure 7.  Graph of the temperature profile for various value 
1Q  when   

                 0.2,0.2,5.0 === GrMK , 5.0,6.0 == Ra and 71.0Pr =  

 

    Table 1.  Validation of analytical solution and numerical solution for local skin friction and 

heat transfer coefficient  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M  

Approximate Analytical 

Results 

       Numerical Results 

  Nu    Nu  

1.0 0.2277901098 0.9204995619 0.2277899744 0.9205005660 

3.0 0.2193514642 0.9204992673 0.2193512694 0.9205010179 

5.0 0.2117623583 0.9204987894 0.2117620996 0.9205014341 

7.0 0.2048939203 0.9204980901 0.2048935965 0.9205018185 
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       Table 2.  Validation of analytical solution and numerical solution  

 

Ra  

Approximate Analytical 

Results 

       Numerical Results 

  Nu    Nu  

0.1 0.2050516901 0.8918113362 0.2050512659 0.8918160181 

0.3 0.2049687794 0.9083140372 0.2049684057 0.9083182049 

0.5 0.2048939202 0.9204980910 0.2048935965 0.9205018185 

0.7 0.2048291813 0.9298472462 0.2048288876 0.9298505984 

Finally, table 1 and 2 confirmed the validity 

and accuracy of the results obtained in this 

study and compared it with those obtained 

using Maple software for local skin – friction 

coefficient ( ) and Nusselt number     ( Nu ) . 

These tables also reveal that there is a strong 

correlation between the two outcomes, 

demonstrating the validity of the study's 

methodology. In Table 1, it is shown that and 

slightly decrease as increases, but in Table 2, a 

rise in both lowers and raises the values of and, 

respectively. 

IV CONCLUSION   

The findings of the measured velocity and 

temperature profiles are examined and 

illustrated. The following are the final 

conclusions: 

1. Velocity of the fluid increases with increase 

in Casson fluid parameter ( ) and Grasshof 

number ( Gr ). 

2. Porosity parameter ( K ) and magnetic 

parameter ( M ) have a great influence in the 

increment and decrement of fluid velocity 

respectively. 

3. The temperature of the fluid reduces when 

the Prandtl number ( Pr ) and heat 

injection/suction parameter (
1Q ) increases. 

4. The skin – friction ( ) is slightly decreased 

with increase in magnetic parameter  

( M ) and radiation parameter ( Ra ) 

5. Heat transfer rate ( Nu ) rises as magnetic 

parameter ( M ) and radiation parameter  

( Ra )  increases. 
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