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Abstract 
Hadamard product of holomorphic function is simply entry wise multiplication of two functions f and g  in .
The Hadamard products of two functions have one thing in common that is, it involves the origin. Irrespective of 
the factors of the Hadamard product either power series or holomorphic functions, the open sets on which they 
are examined contain the origin. The aim of this study, therefore, is to investigate on the properties of Hadamard 
product for a class of holomorphic functions with an arbitrary fixed point. The concept of Hadamard product, 
Cauchy-Schwartz, holomorphic functions, Ruscheweyh differential operators, and Nevanlinna’s theorem are 
employed in this study. This study generalized the coefficient inequalities for starlike and convex functions of 
exponential order   with an arbitrary fixed point using Ruscheweyh derivative.  This study further provides an 
additional inequality and Hadamard product for a class of holomorphic functions with an arbitrary fixed point. It 
is concluded that Ruscheweyh derivative is an effective tool in the generalization of Hadamard product for a class 
of holomorphic functions with an arbitrary fixed point. 

Keywords: Hadamard product, Arbitrary fixed point, Cauchy-Schwartz, holomorphic function, Nevanlinna’s 
theorems. 

1. Introduction 
Hadamard product has been dated back to 1899 
by J.S Hadamard, (1899). Hadamard product of 
holomorphic function is simply entry wise 
multiplication of two functions f and .g  
 
The Hadamard products of two functions have 
one thing in common that is, it involves the 
origin. Irrespective of the factors of the 
Hadamard product either power series or 
holomorphic functions, the open sets on which 
they are examined contain the origin. 
Holomorphic function is a complex function 
that is differentiable at all points of an open set, 
i.e., analytic function or differentiable function. 

Holomorphic function implies that the function 
is analytic at a point which consequently admits 
a power series representation [1,2,3,4,5,6,7]. 
Hadamard product can also be defined as  
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 (1) 
Let 0H  be the class of functions  zf that is 

analytic in the unit disc. Let  1::  zzD
normalized by   00 f and   .10 f
The Hadamard product of two functions 
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in 0H is given as: 
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Acu and Owa (2005) examined on a subclass of 
n starlike functions. The subclass is related to 

functions with positive real part and defined 
classes of close to convex functions with the 
usual normalization
             zzfzfzff ,0Re,01

. Darus and Owa (2017) studied new subclasses 
concerning some analytic and univalent 
functions. They employed series expansion in 
an open unit disk .D   Some partial sums of 
 zf  and analytic functions are derived. Also 

new subclasses of  zf that are analytic and 
univalent are obtained.  Faisal and Darus (2017) 
studied subclasses of analytic functions. They 
employed new linear fractional differential 
operator technique. Convolution properties of 
some subclasses of functions and inclusion 
relationships are established. Mustapha (2017) 
considered characteristic properties of the new 
subclasses of analytic functions. He used 
Ruscheweyh Derivative method. The properties 
of new subclasses of analytic functions and 
several coefficient inequalities of subclasses of 
analytic functions are derived. Oladipo (2015) 
studied coefficient estimates for some families 
of analytic univalent functions associated with 
q analogue of Dziok-Srivastava operator. He 

employed Cauchy-Schwartz inequality 
techniques. Several consequences of new 
subclass of bi-univalent functions in the open 
unit disk is derived. 

       Ezzfzfz  ,Re  . 
 

In recent times, the study of geometric 
functions, convolution, and coefficient 
inequalities has been studied by many 
researchers due to its proper and efficient 
analysis of function [Sokół (2006) & Ukeje and 

Nnadi (2012)]. Hadamard product or 
coefficient inequalities are known for some 
subclasses of functions, it is expedient to 
determine the same for a large class of family. 
However, this necessitates the study of 
Hadamard product in this research work for a 
large class of holomorphic function with 
arbitrary fixed point and to determine the 
coefficient inequalities of exponential order   
and also to improve on the bounds when the 
class satisfy Hadamard product. This study 
improved on [Oladipo (2015) & Ukeje and 
Nnadi (2012)] by incorporating holomorphic 
function of exponential order  . 

2 Materials and Methods 
In this paper, generalization of the coefficient 
inequalities of a class of holomorphic functions 
considered using Ruscheweyh Derivative, 
generalized hypergeometric functions and the 
convolution properties of a class of functions 
with arbitrary fixed point. 
 
3 Model Formulation 
 
3.1 Lemma (3.1) 

A function    Azf   is contained in
 ,S  if and only if 

    eadrek k
nk
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where 1 rz  and .d  

Extremal function denoted by 
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Suppose the inequality in (48) holds, 1z  and
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It implies that 
   

 zf
zfz 

 remains in the center 

of the circle  whose radius is e1 . For this 
reason,  zf  is within the class   eS , .  

Conversely, suppose  zf  is defined by (49) is 
within the class   eS , . Then,  
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For Dz . Pick a real number of ,z which 

implies that 
   

 zf
zfz 

is a real number. 

Assuming that z approaching 1 equation (6) 
yields 
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This completes the proof of Lemma 3.1 

Lastly, the postulate of Lemma 3.1 is sharp with 
the extremal of  
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3.1.1 Theorem (3.1)  

Let  zfDn  be a given function on 2,1j such 

that    AzfDn   is a subclass  neS ,,   
if and only if by 
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where  
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Proof 

Let  zfDn  neS ,,   with 1 rz  and 

d  then  
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and  
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Since       2...21)2...(21  mmmnnn >       2...212...21  nnmmm  

It implies that 

      2...21)2...(21
1
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nnmmm               (14)
 

Equations (13)-(14) yield 
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Substituting for mn,  in equation (15) it yields  
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The result in equation (16) is sharp for the function given by Ruscheweyh derivative of order n, given 
as 
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3.2 Theorem (3.2)  

Let  zf  be a function  zf j on .2,1j  Then,    AzfD j
n   is a subclass  neS jc ,,   if and only 

if  
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Suppose that  zfD j
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Equations (18) -(20) yield 
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Simplifying equation (21) further it yields 

        





























 












qk
jk

k
mn

qk
jk

k adrkadrnnknkk ,
1

,

2
21

,
1

2
212 1

21
1

21




                     (22)
 

The extremal function is given below as 
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3.3 Theorem (3.3)  

Let    AzfD j
n   be a subclass in    mjneS ,...,1,,,   . Then    nSffD m

n ,,...1 
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 Proof 

Following the techniques of [1] 

Let  zfDn
1  belong to  ne ,, 1  and  zfD n

2  belong to  ne ,, 2 . Then, the inequality in  

Theorem 3.1 implies that  
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Following the application of Cauchy-Schwartz inequality it yields 
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It follows that if   zffDn

21   belong to  nS ,,  and the inequality yields 
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 Because of this, we obtain  
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Hence,  kL  is increasing for ,nk   it then yields 
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This completes the proof of Theorem 3.3. 

3.4 Theorem (3.4)  
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Proof 

For  zfD j
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It implies that   zffDn
21   belong to  nS ,,  then 

Following the Cauchy-Schwartz inequality it yields 
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Then, equation (39) shows that   zffDn
21   belong to  nS ,,  then 
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Consequently,   zffDn
21   belong to  nS c ,, , equation (42) becomes 
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Since equation (39) is an increasing function, it implies that qk   which shows that   zffDn
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This completes the proof of Theorem 3.4. 
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3.5 Theorem (3.5)  
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Satisfying the condition for Hadamard product and  
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Equations (37) and (39) yield  
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which means that 
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This completes the proof of Theorem 3.5 

3.6 Theorem (3.6)  
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Given that    zgzf  and  zg  belong to  cS  then 
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Proof  

Given that  zgf  then     zgzf   and   1z satisfying    zgzf   

Assume that  zg belong to  cS  if and only if      zgzzf   belong to the family of starlike 
functions where   is the arbitrary fixed point. Hence, following the applications of Nevanlinna’s 
theorem on the starlike functions and the implications of subordination of  zgf  then

    zgzf   and   1z satisfying    zgzf  . 

Nevanlinna’s theorem and Durren’s subordination implications further yield 
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Equation (53) consequently yields 

  1 dran                      (54) 

This completes the proof 3.6. 

4.  Results and Discussion 

Corollaries 4.1 to 4.4 are the consequences of Lemma 3.1 and Theorem 3.1 

Corollary 4.1  

Let  zf  belong to  A  exist within the class   eS , .  Then, 
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where ,d the inequality in (55) remains true for  zf  stated by (8) 
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where drz  ,1 and the inequality in (57) is valid for functions given in (9) 

Corollary 4.3 

Suppose a function    AzfDn  is contained in  0,,  eS  , then  
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where ,1 rz and d where  

The equality in (58) is valid for functions given in (17) 
This completes the consequences of Theorem 3.1. 

The consequences of Theorem 3.2 are the following corollaries (3.4)-(3.7) 

Corollary 4.4  
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Corollary 4.5 

Suppose a function    AzfDn  is contained in  0,,  eS  , then  
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The inequality holds for equation (17). 

Corollary 4.6 

Suppose a function    AzfDn  is contained in  neS ,,  , then  
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where 1 rz and the inequality holds for equation (17)  

Corollary 4.7 

Suppose a function    AzfDn  is contained in  0,,  eS  , then  

    1,
2

1
m,01

m,0
, 








 



kjk drekk
ea

j

j

       (63)

  

where 1 rz  and the inequality holds for equation (23) when 0n . 

This completes the consequences of Theorem 3.2. 

The consequences to Theorem 3.3 are Corollaries (3.8) -(3.11) 

Corollary 4.8 

A function    AzfD j
n  is in the class  ,0,,  eS   if and only if  
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where 0,,1  ndrz 
 

Corollary 4.9 

Let    AzfD j
n  belong to the class  neS ,,   
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 Corollary 4.10 

Given that  

   AzfD j
n  contained in   rjneS j ,...,1,,   and     sjneSzg j

j ,..,2,1,,     then 
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Equation (66) is sharp for    mjzfD j
n ,...,1  given by 
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Corollary 4.11 

Suppose a function    AzfDn  is contained in  0,,  eS  , then 

    0,,...1 wSzffD r
n   

where 
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Equation (68) is sharp for    mjzfD j
n ,...,1  given by  
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This completes the consequences of Theorem 3.3. 
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5.  Conclusion and Recommendations 

This research work considered Hadamard 
product of holomorphic functions with arbitrary 
fixed point using Ruscheweyh derivative 
operator on some connected domain. The result 
obtained was validated with the existing results. 
This study showed that Ruscheweyh derivative 
is not a copied tool when the results of 
Hadamard product and coefficient inequalities 
are generalized. This research work also 
provides additional proofs for a class of 
holomorphic functions with arbitrary fixed 
point. 

This research work extended the classes of 
univalent analytic functions studied by [12] 
using Ruscheweyh derivative operator. Larger 
classes of family are obtained. This study shows 
that Ruscheweyh derivative is a veritable tool 
when Hadamard product of holomorphic 
functions with arbitrary fixed point are to be 
generalized. 

Also, this study extended the work of [15, 16] 
by providing additional proofs for a class of 
holomorphic functions with arbitrary fixed 
argument and fixed point using the generalized 
hypergeometric functions. This study shows 
that generalized hypergeometric functions are 
capable of transforming functions into Schwarz 
function. Ruscheweyh derivative operator for a 
generalized convex function and Starlike 
functions of order exponential  , given that.  
is a fixed point is specified. 

Lastly, Hadamard product between a subclass 
of holomorphic functions with arbitrary fixed 
point and argument can be generalized using 
Ruscheweyh derivative. 
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