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Abstract 
In this study, the combined effects of thermophysical fluid properties alongside nonlinear thermal and solutal 
convective processes in an inclined flow region containing Casson nanofluid subjected to slip and convective boundary 
conditions are considered. Application of induced non-uniform magnetic field strength applied perpendicular to the 
flow plane and the buoyancy influences are believed responsible for the quadratic convection rate. The prime PDEs are 
renewed to systems of ODEs via applicable transformations and similarity variables. Assuming a series trial solution, 
the flow distribution results were obtained numerically by collocation approach with Legendary polynomial basis 
function. Validation of the numerical results plays favorably when compared with the weighted residual method 
(Galerkin) and the existing literature. The results reveal that; Casson fluid exhibit a solid characteristic when yield stress 
is more than the shear stress, pronouncement of nonlinear solutal and thermal buoyancy effects predicts the acceleration 
of the flow fields greatly compared to the linear model, adherence between the fluid particles  and flow surface displayed 
retardation in shear force thus enhanced the motion of Casson fluid and diminished the energy fields , surface suspension 
suppresses the flow but energizes both temperature and nanoparticle volume fraction profiles. 
Keywords: Thermophysical fluid properties, Quadratic convection, Legendary Polynomial, Casson nanofluid, Inclined 

Plane, Collocation method. 
 

1.  Introduction 

The analysis of heat and mass transportation is very  
demanding due to its applications in the field of sciences, 
engineering, and industries when operating at high 
temperatures. Some of these industrial applications 
include; combustion, electronics cooling, reactor safety, 
thermal system, drying surfaces , and solar collector, which 
demonstrate the nonlinearity phenomenon in temperature. 
The nonlinearity term is considered in the buoyant force 
due to the heat transfer properties of the fluid and the 
notable physical significance of the fluid flow (Patil & 
Kulkarni, 2019). 
Applications of quadratic temperature and density 
variations have motivated some researchers like Jha & 
Saki, (2019) who analyzed the effects of the chemical 
reaction and diffusion thermo on convective heat and mass 
transfer under nonlinear Boussinesq approximations  
through a vertical moving plate. It is noticed that higher 
values of nonlinear convection enhance the velocity 
profile. The effects of roughness  (slip) on MHD nonlinear 
mixed convection flow of nano liquid through a vertical 
moving plate is investigated by Patil & Kulkarni, (2019). 
Raju, et al. (2017) examined nonlinear convection in 

Casson fluid flow with time dependency in a porous 
medium over a rotating cone while Raju, et al. (2018) 
analyzed the nonlinear convection of an unsteady Casson 
fluid through a rotating cone with Darcy porous medium. 
They discovered that an increase in nonlinear thermal and 
solutal convection parameters leads to more friction force 
between the particle in the two directions. Kumar & Sood, 
(2016) examined the combined effects of magnetic field  
and nonlinear convection on two-dimensional boundary 
layer stagnation point flow due to shrinking sheet. They 
observed that both magnetic field and nonlinear convection 
parameters enhance the solution range significantly. Hayat, 
et al. (2018) studied the effects of quadratic mixed  
convection flow taking thermophoresis and Brownian  
movement into consideration. Recently, Akolade, et al. 
(2021a) and Idowu, et al. (2021) investigated the nonlinear 
thermal and solutal convection impact on the magnetized  
motion of Casson fluid, the first on variable slendering 
sheet and the latter through an annular medium. They 
concluded that the temperature and velocity increase with 
quadratic convection parameter while a decrease is 
observed in the concentration fields. Other researchers who 
have considered the solutal and thermal convection in the 
quadratic form include; Upadhya, et al. (2018a), (2018b), 
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Kumar, et al. (2017), Ibrahim, et al. (2017), 
Nagaendramma, et al. (2018) among others. 
The thermal conductivity and viscosity are very sensitive 
to temperature rises, which usually causes significant 
changes in the physical properties of the fluid, most 
especially in the theory of lubrication where they are been 
affected by the heat generated by internal friction and a 
corresponding temperature rise (Akolade, et al. (2021b), 
and Jawali & Chamkha, (2015)). The fluctuation of 
viscosity resulting from variations of temperature or 
species composition is applicable in engineering and 
environmental when encountered turbulent flows. The 
temperature rises with the local transport phenomena by 
reducing the viscosity across the momentum boundary 
layer and affected greatly the heat transport rate at the wall.  
These applications lead Jawali & Chamkha (2015) to 
investigate the variable properties on the free convective 
flow of a viscous fluid in a vertical channel. It is found that 
the velocity and temperature increase with variable 
viscosity parameters. Hayat, et al. (2016) examined the 
variable conductivity and viscosity with unsteadiness in the 
mixed convective flow. The effect of variable properties on 
Casson nanofluid flow with convective heating and 
velocity slip is examined by Gbadeyan, et al. (2020). The 
results show that the velocity increases with variable 
properties while a decrease is observed in nanoparticle 
volume fraction and temperature. The dissipative viscous 
fluid flow through a spinning cone with mixed convection 
and variable properties is investigated by Malik, et al. 
(2016). Salawu and Dada, (2016) analyzed the radioactive 
temperature change of variable conductivity and viscosity 
in a non-Darcian medium with inclined magnetic field and 
dissipation. The use of viscous fluid flow and mixed  
convection in a vertical channel is carried out by Umavathi, 
et al. (2017). Other research works on variable properties 
with various physical effects and geometries includes; 
Idowu, et al. (2020), Animasaun, (2015), Kench, et al. 
(2017), Kumar, et al. (2017), Akolade, et al. (2021a) to 
mention but a few. 
Casson fluid is one of the types of non-Newtonian fluids 
which behave like an elastic solid, it has a shear-thinning 
liquid and assumed stress below which no flow occurs and 
a zero viscosity at an infinite rate of shear. It is found useful 
in engineering and industries like coating and polymer 
processing, paper production, aerodynamic heating, and 
petroleum (Animasaun, 2015). Its applications in many 
processes occurring in nature and industries attracted the 
attention of some researchers such as Kala, et al. (2020) 
who analyzed the flow of Casson fluid in a magnetic field  
with velocity slip in a Forchheimer porous medium through 
an inclined nonlinearly stretching surface. The result shows 
that the velocity boundary layer thickness and the absolute 
value of velocity reduce with a hike in the Casson number 
while the reverse is the case for thermal boundary layer 
thickness and an absolute value of temperature. Analysis 
of MHD Casson fluid flow through a permeable stretching 
sheet with heat and mass transfer is investigated by 
Asogwa, et al. (2020). Investigation of Casson fluid in 
squeezing motion with variable thermophysical features  by 
Akolade, et al. (2021b) reveals that more injection of 

Casson number downsized the velocities and energy fields. 
Generalized heat flux in Casson fluid over a slendering 
surface is discussed in Akolade, et al. (2021a), and Idowu, 
et al. (2020). 
To the author's best knowledge, the combined investigation 
of variable properties influence on quadratic convection 
flow of Casson Nanofluid past an inclined plane with slip 
condition is still far-fetched in the literature, which is the 
aim of the study. The governing equations of the flow are 
nondimensionalized and transformed to a set of coupled 
nonlinear ordinary differential equations. Collocation  
method with assumed Legendary polynomial basis trial 
function and MATHEMATICAL 11.0 software is 
employed to achieve approximate solutions of the flow 
distributions and characteristics. 
 

2.  Model formulation 

An incompressible, laminar, electrically conducting, and 
steady flow with quadratic convective motion of Casson 
nanofluid through porous and inclined plane geometry is 
investigated. As shown in Figure 1, the flow is assumed 
two dimensional, 1y -axis taken flow streamwise while 2y
-axis is assumed perpendicular to it, with the magnetic field  

0.5
1 0 1( ) =B y B y   perpendicular to the flow streamwise, 

variable electrical field effect *
0 1= u   is applied,  

 
Figure  1: Problem flow geometry of an inclined plane 

where 0  0B  is the constant electrical and magnetic field  
influence respectively is been applied normally to the fluid  
flow direction. The surface of the plate and free stream 
temperatures are taken to be fH  and H  accordingly, 
while the wall and free stream mass transfer are taken to be 

wG  and G  respectively.  
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2.1. Governing Equations 

Based on the above assumption, boundary layer, and 
nullifying the usual Boussinesq approximation theory, the 
Casson nanofluid motion is governed by the following flow 
model equations (Uddin et al. 2012, Animasaun 2015, 
Gbadeyan et al. 2020, and Akolade et al 2021b). 
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With the boundary conditions  
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Where 
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,  

The diffusion Rossland approximation heat flux is  defined 
(Idowu & Falodun (2020)) 
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, (6) 

 

Following Akolade, et al. (2021a) and (2021b) and Idowu 

& Falodun (2020), the linear form of thermal conductivity 

and  temperature-dependent plastic dynamic viscosity is 

as thus:  

0 0( ) = [1 ( )], ( ) = [1 ( )]i w jH a H H H a H H        . (7) 

 

2.2. Dimensionless transformation 

To put the governing PDEs systems of Eqns (1) – (5) into 

dimensionless form and invoking Eqns (6) and (7), we 

introduced non-dimensional variables (Uddin et al. 2012 

and Gbadeyan et al. 2020); 

2
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Hence, the dimensionless form of Eqns (1) – (5) are as thus; 
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Subjected to the boundary conditions   
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2.3. Stream function transformation 

With the stream function 1 2
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2.4. Similarity transformation 

The following similarity variables are used (Uddin et al. 
2012 and Gbadeyan et al. 2020); 
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Implementing the transformations in Eq (18) on the 
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With boundary conditions  
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2.5. Engineering Physical characteristics 

Following Uddin et al (2012) and Gbadeyan et al. (2020), 
the flow characteristics  are defined as;  
 

2 2

1 1

2 2=0 =0
1 1= , and =

( ) ( )
y y

y y
f w

H G
y y

Nu y Sh y
H H G G 

    
       

 
 

. (23) 

 
Implementing the steam function   along with Eqs (8)  

and (18)  on Eq (23)  results to the reduced Nusselt and 

Sherwood numbers respectively; 
 

1 1 1 1

0.25 0.25= '(0), , = '(0)y y y yRa Nu and Ra Sh    , (24) 

 

3. Numerical procedure 

The solutions to the non-linear, coupled, ODEs in Eqs 
(19) (22)  are obtained via collocation technique with  
Legendre polynomial as the basis function. The problem 
boundary is [0, ) , to implement this numerical method, 
the domain is first truncated using the domain truncation 
approach [0, ]L . The Legendre polynomial defined on 
[ 1,1]  is transformed to [0, ]L  via algebraic mapping, 
 

2= 1, [ 1, 1].
L
      (28) 

The unknown function ( )h  , ( )  , and ( )   are 
approximated by the sum of a finite series of the legendary 
polynomial ( )jZ  as 

=0

=0

=0

2( ) ( ) = 1 ,

2( ) ( ) = 1 , for =0,1,...,

2( ) ( ) = 1 ,
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¬

¬
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, (29) 

( )h  , ( )   and ( )   are approximate series of ( )h 
, ( )   and ( )   respectively at N collocation points, 

and ja , jb  and jc  are the unknown constants to be 

determined.  
The generated equations of 3 3N   algebraic systems 
with 3 3N   unknown coefficient is solved via a 
MATHEMATICA 11.0 symbolic package with newton 
iteration technique to simulate the system of derived 
algebraic equations to obtain the required constants 
coefficients ( ja , jb  and jc ). Hence, solutions are 
obtained for the flow distributions and characteristics. 
 

4. Results and Discussion 

The coupled non-linear ordinary differential equations (19) 
– (21) with boundary condition (22) are solved. The results 
show the influence of different pertinent parameters 
involved on the velocity, energy, and nanoparticle volume 
fractions distributions along with the engineering flow 
characteristics. Following Gbadeyan, et al. (2020) and 
Uddin, et al. (2012), the default values employed in this 
study are 1 2 0.3, = 0.71,rP   = = 0.1,Nt B  

= = 0.1,R Nb 1 2 1.5,    1, 0.01,Nr Ec 

2 60.3, ,s   0.3,  = 0.01, = 0.3,Df Sr
= 5, =1,Da Le = = 0.5,H Bi  = 0.03,G 0.2   

else otherwise stated. The obtained results are compared 
with the existing works of Uddin et al. (2012) and 
Gbadeyan, et al. (2020) when the introduced parameters 
are set to zero and the results are found to give an excellent 
agreement (see Table 1). Also, a numerical comparison is 
carried out using Galerkin Weighted Residual method, the 
results are as shown in Tables 2. 
 
Figures 2 and 3 portray the variable viscosity ( 1 ) and 

thermal conductivity ( 2 ) effects on flow distributions. It 
is observed from Figure 2 that the velocity diminished with  
a hike in the viscosity parameter while the acceleration is 
noticed in the energy field. Figure 3 reveals that the 
velocity and temperature profiles are enhanced with a raise 
in a thermal variable while reduction is realized in the case 
of nanoparticle volume fraction. Physically, the fluid  
thickness (temperature-dependent viscosity) and 
conductivity are very important and indispensable to 
foresee the flow behavior suspiciously. 
 
The effects of inclination angle (  ) on velocity, 
temperature, and concentration distributions are registered 
in Figure 4. It is shown from the figure that an increase    
reduces the velocity distribution and speeds up the 
temperature along with the nanoparticle volume fraction 
profiles. Actually, the impact of larger values of inclination  
angle is to build a stronger impression on the external 
magnetic field. 
 
The impact of thermal and solutal convection ( 1  and 2
) on the flow field are displayed in Figures 5 and 6 
respectively. The result shows that a rise in 1  improving  
the particle interaction nonlinearly, which leads to an 
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increase in velocity and a reduction in temperature profile 
(see Figure 5). Figure 6 reveals that an increase in solutal 
convection causes a slight increase in velocity distribution. 

Physically, for the convection process, an upgraded 
material thermal conductivity is required for a perfect 
prediction of heat and mass transfer across the flow region.  

 
Table  1: Comparison of Uddin et al. (2012), Gbadeyan et al. (2020), and present results of Nusselt number for 

= 0.1, , =10t a eN D Bi L   , 1 2 2 1 2 = = = 0,c f rs J J E R B H G D S               
Values 1.0rP   5rP   

bN  rN  Uddin et al. 
(2012) 

Gbadeyan et al. 
(2020) 

Present 
Results 

Uddin et al. 
(2012) 

Gbadeyan et al 
(2020) 

Present 
Results 

0.1 0 0.34257 0.342575  0.38395 0.383959  
 0.2 0.33659 0.336593  0.37734 0.377351  
 0.4 0.33012 0.330127  0.37024 0.370246  
 0.6 0.32305 -  0.36252 -  

0.3 0 0.29600 0.295999  0.33288 0.332884  
 0.2 0.29178 0.291778  0.32821 0.328211  
 0.4 0.28724 0.287244  0.32322 0.323225  
 0.6 0.28231 -  0.31785 -  

 
Table  2: Comparison of Galerkin Weighted Residual Method (GWRM) and Legendary polynomial with Collocation  
Technique (LCT) on Skinfriction, Nusselt number, and Sharewood number with different values of temperature-dependent 
properties. 

Value GWRM LCT 

1  2  ''(0)h  '(0)  '(0)  ''(0)h  '(0)  '(0)  

0.0 0.2       
0.1 0.2       
0.2 0.2       
0.3 0.2       
0.4 0.2       
0.0 0.5       
0.1 0.5       
0.2 0.5       
0.3 0.5       
0.4 0.5       

 

Table 3: Results of pertinent flow parameters on heat transfer '(0)  and mass transfer coefficients '(0) . 
values '(0)  '(0)  values '(0)  '(0)  

1  0.1   
2  0.0   

 0.3    0.1   
 0.5    0.3   

1  0.0   
2  0.0   

 1.0    1.0   
 2.0    2.0   

2S  0.1   Bi  0.1   

 0.3    0.4   
 0.5    0.7   
  0.1     300   
 0.5    450   
 1.0    600   

Nt  0.1   Nb  0.2   
 0.2    0.5   
 0.3    0.7   

Sr  0.1   Df  0.01   

 0.3    0.1   
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 0.7    0.5   
 

 

 
(a) (b) 

Fig. 2. Variable viscosity ( 1 ) impact (a) velocity, and (b) temperature fields  

 

 
(a) (b) 

 
(c) 

Fig. 3. Variable thermal conductivity ( 2 ) impact (a) velocity, (b) temperature, and (c) concentration fields  
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(a) (b) 

 
(c) 

Fig. 4. Inclination ( ) impact on (a) velocity, (b) temperature, and (c) concentration fields  

 

 

 
(a) (b) 

Fig. 5. Nonlinear thermal convection ( 1 ) impact on (a) velocity and (b) temperature fields  
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Fig. 6. Nonlinear solutal convection ( 2 ) impact on the velocity field 

 

 
(a) (b) 

 
(c) 

Fig. 7. Casson parameter ( ) impact on (a) velocity, (b) temperature, and (c) concentration fields  

Figure 7 (a, b, and c) project the impact of Casson 
parameter (  ) on velocity, temperature, and 
concentration profiles respectively. It is shown from the 
figures that a hike in the Casson parameter speeds up the 
velocity distribution and slows down the temperature and 
nanoparticle volume fraction distribution. Physically, 
Casson fluid exhibits a solid characteristic when yield  
stress is more than the shear stress, on the other hand, it 
behaves as fluid under a reverse trend. 

Figure 8(a and b) gives the effects of slip ( 2s ) on velocity 
and temperature distributions. It is clearly seen that the 
velocity raises with the slip impact, while temperature 
reduces with an increase in the slip parameter. In reality, 
whenever the slip parameter increases, the fluid particles 
keep their distance from the plate which leads to a 
reduction in shear force and accelerates fluid velocity 
accordingly. 
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(a) (b) 

Fig. 8. Velocity slip ( 2S ) impact on (a) velocity, and (b) temperature fields

5. Conclusions 

This study analyzed the influence of variable properties on 
the quadratic convective flow of Casson nanofluid past an 
inclined plane. The nonlinearities convention considered in 
buoyancy force due to heat transfer properties and the 
notable physical significance of the fluid flow is applicable 
in industries, most especially in the area of combustion, 
electronic cooling, reactor safety, thermal systems among 
others, which demonstrates its phenomenon in the process 
of heat and mass transfer. The governing model equations 
are non-dimensionalized and transformed via a suitable 
similarity transformation to nonlinear ordinary systems of 
equations. Using the collocation method base on the 
Legendre polynomial basis function, the resulting systems 
of ODEs were solved numerically. The impact of various 
pertinent parameters of interest involved in the problem 
was observed and clarified through tables and graphs. 
From the study, the following conclusions are drawn. 

1. The velocity is appreciated with 2 1 2, , ,   

2s  and depreciated with a rise in 1 and  . 

2. The energy profiles improved with 1 2, ,    and 

declined with an increase in 1, ,   and 2s . 
3. The nanoparticle volume fraction profiles are 

elevated with   and depressed with a hike in 2  
and  . 

4. The rate of heat transfer appreciated with 2  and 
depreciated with higher values of 1 1,   and 2 . 

5. The rate of mass transfer speeds up with 2 , 2
and slow down with a raise in 1  and 1 . 

Nomenclature 

  thermal conductivity 

pk  porous medium permeability 

g acceleration due to gravity 

TD  thermophoresis coefficient 

BD  mass diffusion coefficient 

sc  absorption susceptibility 

mD  Brownian coefficient 

pc  specific heat capacity 

1( )fh y  heat transfer coefficient 

f  fluid density 

  ratios of the nanoparticle to base fluid heat 
capacity 

1k  absorption constants 

1Q  dimensional internal heat generation 

1  linear thermal expansion coefficient 

3  linear solutal expansion coefficient 

1 2,u u  Fluid velocities along 1 2,y y  respectively 

ja  variation of thermal conductivity 

G  heat source parameter 

Nb  Brownian motion 
Pr  Prandtl number 
Nt  thermophoresis parameter 

Ra  Rayleigh number 

Le  Lewis number 

Df  diffusion-thermo parameter 

Da  Darcy number 

p  density of nanoparticle 

mT  Fluid temperature 

  constant coefficient of viscosity 
k0 thermal-diffusion ratio 

*k  constant rate of chemical reaction 
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*b  Forchheimer’s initial coefficient 

p  density of nanofluid 

0B  constant magnetic field 

0  constant electric conductivity 

0  volumetric thermal expansion 

  Casson parameter 

1  Stefan-Boltzmann Rossland 

  Inclination angle 

2  nonlinear convection parameter due to 
temperature 

4  nonlinear convection parameter due to 
concentration 

1s  Slip parameter 

ia  variation of viscosity 

J  magnetic field parameter 
  chemical reaction parameter 
Ec  Eckert number 

Nr  buoyancy ratio 

Sr  thermal-diffusion parameter 

R  radiation parameter 
B  Forchheimer parameter 
Bi  Biot number 
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