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Abstract 
 
 The univariate kernel estimator usually requires a smoothing parameter, unlike the multi-dimensional estimators that 
necessarily require more smoothing parameters. The smoothing parameter(s) of kernels with a higher dimension may be 
called smoothing matrices. Kernels of higher dimensions have three kinds of parameterizations as estimators viz: constant, 
diagonal, and full parameterizations. Unlike the full parameterization, the diagonal parameterization exhibit some levels of 
restrictions. This study attempts to reconnoiter the coherence exhibited by kernel estimators especially where smoothing 
parameterizations are employed. In this discourse, asymptotic mean-integrated squared error(AMISE) is used as a criterion 
function and bivariate cases alone are considered. With some hypothetical data, the results show that full smoothing 
parameterization outperformed the constant and diagonal parameterizations in respect of the asymptotic mean-integrated 
squared error’s value and the kernel estimate’s ability to retain the true characteristics of the affected distribution. 
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1. Introduction 
With recent developments in analytics, machine learning big 
data, statistical analysis has gained a strong foothold as 
applied science. Many statistical algorithms have been 
refined and integrated into many machine models. Modern 
analytics is almost inseparable from statistical models and 
reasoning. In statistical terms, data analysis revolves around 
density estimation, which involves the design of probability 
estimates with observations drawn from certain or uncertain 
datasets. Density estimation (DE) is a major statistical 
inferencing subject and maybe examined from two contexts; 
the parametric estimation (PE) and the nonparametric 
estimation (NPE). In PE, the dataset or observations may 
belong to a certain distribution. In such a scenario, prior 
knowledge of the distribution may be required to estimate the 
required parameters. Under NPE, assumptions are not often 
tenable as to how the observations are distributed but the 
observations are given the opportunity to “speak for 
themselves”.  
Nonparametric density estimation techniques are of wide 
applications with the kernel density estimator (KDE) playing 
crucial statistical roles in data analysis. Nonparametric 
estimation forms the building blocks for different 
semiparametric estimators where the separability ideology of 

the independent variables in the semi-parametric model is in 
line with the devolution of the decision-making process in 
organizations or stages of production in industries in a real-
life situation (Hardle, et. al.,2004). Kernel estimation (KE) is 
one method in data smoothing. It involves drawing inferences 
and subsequent conclusions on various observations. KE is a 
vital tool in analysis, representation, and visualization in 
relation to a given distribution (Siloko, et. al.,2019, 
Simonoff, 1996). KE could be applied indirectly to other 
areas of nonparametric estimation such as discriminant 
analysis, goodness-of-fit testing, hazard rate estimation, 
bump-hunting, intensity function estimation, and 
classification with regression estimation (Raykar, 
Duraiswami & Zhao, 2015). The kernel estimator is a popular 
nonparametric technique in density estimation (DE) and its 
univariate form is stated thus: 

 

where  is the kernel function(KF),  is the 
smoothing parameter(SP) i.e. bandwidth, represents the 
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real observations/measurements, and represents the sample 
size. The KF decides the pattern of the estimate generated 
while the SP controls the extent of smoothing to which the 
estimate attains. The KF is non-negative and satisfies the 
following conditions 

 

Three conditions are associated with equation (1.2): 

a. The first implies that KF must integrate into one, 
which is to the effect that KFs are probability 
density functions (PDFs); 

b. The second is that the average of each kernel is 
zero.  

c. The third indicates that the variance computed for 
the kernel  is non-zero (Scott, 1992).  

KDE is applied in multivariate scenarios where different sets 
of observations are analyzed, particularly the bivariate kernel 
(BK) that presents its estimates in wireframes or contour 
plots. The BK density estimator is very relevant as it serves 
as a bridge between univariate KE and higher dimensional 
kernel estimators. In BK estimation,  are considered 
random variables whose values are in  having the joint 
density function(JDF)  with 

 representing a class of observations of size  
drawn from the distribution. The BK density estimator is 
expressed as:    

 

where  and  are the SPs in  and  axes and 
is a BK function, the product of two univariate 

kernels. The KEs of Equation (1.3) is simple to understand 
and interpret whether as surface plots or contour plots. In data 
analysis and visualization, the bivariate kernel estimator 
(BKE) is useful for visualization using the familiar contour 
plots and/or perspectives (Silverman, 1996, Simonoff, 1996, 
Scott, 1992). The BKE is applied in domains like 
nonparametric discriminant analysis and goodness-of-fit 
testing (Duong & Hazelton, 2003). A major problem of KE 
is in the selection of SP. The SP is relevant in measuring the 
estimator’s performance whether in the univariate or 
multivariate form (Zhang, Wu, Pitt & Liu 2011, Siloko, 
Ishiekwene & Oyegue, 2018). The multivariate form of 
Equation (1.1) with a single bandwidth KE is given as 

 

where  is the KF’s dimension. The kernel, , in this case, 
is a d-variate density function that satisfies the conditions in 
Equation (1.2) and its contours are assumed to be spherically 
symmetric. The advantage of this multivariate form of 
parameterization is that the multivariate asymptotic mean 
integrated squared error (AMISE) and the optimal smoothing 
parameter value can be easily computed unlike other 
complex forms of parameterizations without explicit optimal 
bandwidth formula. The multivariate product kernel form of 
Equation (1.1) with each smoothing parameter for the axes 
and also satisfy the conditions in Equation (1.2) is given as 

 

This multivariate product kernel applies the same symmetric 
univariate kernel and variance in each dimension but 
different bandwidths for the axes (Sain, 2002). 

The aim of this study is to examine the KE’s efficiency or 
performance with real data using the constant smoothing 
matrix, diagonal smoothing matrix, and full smoothing 
matrix. In each case, AMISE is used as the error criterion 
function (ECF).  

2. The AMISE Approximations 

The mean squared error (MSE) has two components: the bias 
and standard error (or variance). The MSE of  is a 
function of the argument  defined as: 

 

The global measure of the accuracy of  is the mean 
integrated square error given by 
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The two components of the mean integrated squared error 
will be considered individually. 
 
2. 1 The Bias Term 
The mathematical expectations of a kernel transformation 
can be written as integrals which take the form of a 
convolution of the kernel and the density function as 

 

Since the operator  is linear we have 

 

The transformation 
  on Equation (2.1.2) yields 

 

The integral in Equation (2.1.3) is not analytically solvable, 
so it will be approximated using Taylor’s series expansion on 

in the argument , which yields 

 

Integrating Equation (2.1.4) term by term and using the 
conditions in Equation (1.3), we have 

 

 

The second equality in Equation (2.1.5) uses the assumption 
that is a  order kernel. Hence the bias could be stated 
thus:                                                                                                                                                               

 

The kernel estimator’s bias is of the form 

 

 

In the case of the second-order kernels, Equation (2.1.6) 
becomes: 

 

where  represents terms that converge to zero faster 
than  as  approaches zero. Thus the bias is 

 

Therefore the integrated squared bias for the mean integrated 
squared error is of the form 
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This means that the bias depends on the SP , the variance 
of the kernel  and the curvature of the density  
at the point  Generally, the bias in the square of SP 
potentially increases in the second-order kernel. 

 

 

2. 2 Variance Term 
The KE is a linear estimator and the are usually 
independently and identically distributed. Thus the variance 
is given by 

 

Therefore, the variance of  is  

 

Using the change-of-variables
 , we have 

 

Applying Taylor’s series expansion on Equation (2.2.3) we 
have 

 

As  gets large and  decreases and with conditions in 
Equation (1.2), we then have Equation (2.2.6) to be 
approximately given as 

 

The function  in Equation (2.2.7) is a probability density 
function; therefore integrating it will produce an 
approximation of the form 

 

Thus, the mean squared error for the second-order kernel is 
of the form 

 

Again, on integrating Equation (2.2.9) with respect to  yields 
an estimate of the mean integrated squared error given by 

 

A global measure of precision is the asymptotic mean 
integrated squared error given by 

 

where  is the roughness of the 
unknown probability function,  is the smoothing 
parameter,  is the sample size,  is the 
roughness of the kernel function and  is the variance 
of the kernel.  

2.3 The Asymptotically Optimal Bandwidth 
The formula of AMISE expresses the MSE as a function of 
the SP denoted by . The SP value  that minimizes the 
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expression of the AMISE is called the asymptotically optimal 
bandwidth or asymptotically optimal smoothing parameter. 
The optimal smoothing parameter is obtained by solving the 
differential equation 

 

The solution to Equation (2.3.1) will produce the smoothing 
parameter that minimizes the AMISE of the kernel estimator 
which is of the form 

 

The smoothing parameter with the minimum AMISE in 
Equation (2.3.2) can also be expressed in terms of the 
dimension as 

 

The corresponding AMISE of Equation (1.4) is given as   

 

 

Also, the smoothing parameter that will minimize the AMISE 
in Equation (2.3.4) is of the form 

 

The AMISE of the multivariate product kernel estimator in 
Equation (1.5) is given as  

 

where , is the roughness of the kernel, 
 is the variance of the kernel,  is the Hessian 

matrix of the density  and  indicates the trace of a 
matrix (Wand & Jones, 1995, Sain, Baggely, & Scott, 1994). 
The popular parameterizations in multivariate kernel 
estimation are the constant, diagonal, and full 
parameterizations provided the matrix is symmetric and 
positive definite. The smoothing parameter that minimizes 
the AMISE of Equation (2.3.6) is  

 

The choice of the SPs i.e. the smoothing matrix in the 
multivariate case is strictly based on the complexity of the 
underlying density and the number of parameters to be 
estimated. The choice of a kernel function is not a problem 
because most kernel functions are probability density 
function. The kernel function employed in this work is the 
standard normal kernel that produces smooth density 
estimates and simplifies the mathematical computations. The 
standard normal kernel function of the bivariate kernel 
estimator is 

 

The matrix form of the diagonal parameterization and the full 
parameterization of the bivariate kernel estimator is 

 

The diagonal form of smoothing parameterization considers 
only the elements of the leading diagonal of the smoothing 
matrix while the off-diagonal elements are zero whereas the 
full smoothing matrix takes into consideration all the 
elements. In constant parameterization, the same smoothing 
parameter is applied to all axes. The bivariate form of the 
constant parameterization is based on the assumption that 

 and the matrix representation is 

 

The performance of these forms of parameterizations will be 
compared using the asymptotic mean integrated squared error 
as the error criterion function. 
 
3. Results and Discussion 
Here, we discussed the performance of the constant, 
diagonal, and full smoothing matrices using real data 
examples. Two bivariate data sets are examined with three 
classes of smoothing parameterizations. The smoothing 
matrix that minimizes the AMISE in the constant smoothing 
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matrix is represented by   while the diagonal and 
full smoothing matrices are represented by  and 

 respectively. The results of their performance in 
terms of the AMISE value are presented in Table 1 and Table 
2 respectively and these are statistically relevant. Again 
kernel performance can also be viewed from the ability of the 
kernel estimates to retain the true features of the observations 
and this vital role of retention of features such as bimodality 
of the distribution is in Figure 6.  
The first data set is the ages at marriage for a sample of 100 
couples that applied for marriage licenses in Cumberland 
County, Pennsylvania USA, which is made up of two 
variables the ages of husbands and their wives at marriage 
(Sabine & Brain, 2004). The analysis of these data addresses 
the issue of differences in the ages of husbands and wives at 
marriage. However; on general observation of the data, wives 
are younger at marriage. The data were standardized in order 
to obtain equal variances in each dimension because, in most 
multivariate statistical analysis, the data are always 
standardized to ensure that there are no differences in the 
ranges of variables. The smoothing matrices for the constant, 
diagonal and full matrices of this data are   

 

 

The BKEs of the forms of parameterizations are shown in 
Figure 1, Figure 2, and Figure 3 respectively, and represent 
the surface and contour plots using the bivariate standard 
normal kernel(BSNK).  In this data set, estimates of the 
constant and diagonal matrices are similar and it should be 
noted that the kernel estimates of the forms of 
parameterization investigated clearly revealed the 
unimodality of the data which exemplifies the usefulness of 
bivariate kernel estimates in highlighting structures in a data 
set. The unimodality of the data set is an indication of the 
ages at which husbands and their wives were more likely to 
get married and from the data, these ages are distinctly 
centered between ages 26 and ages 28. The probability of 
getting married at these ages is high for both men and women 
with values between 0.2 and 0.25 respectively as seen in the 
contour plot with the highest probability value at its mode. 
The kernel estimates show the tendency for younger men to 
marry younger women and vice versa where marriages are 
usually more in the twenty’s and the probability of getting 
married tends to slow downward as there is an increase in 
ages; hence with lower probability values. 

 
Figure-1. KEs (Surface Contour plots ) of Hc SP 

 

Figure-2. KEs (Surface and Contour plots) of HD SP 

 

Figure-3. KEs (Surface and Contour plots) of Hp SP 
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Table 1 shows the asymptotic integrated variance, asymptotic 
integrated squared bias, and the asymptotic mean integrated 
squared error (AMISE) for the ages at marriage data.  

The analysis presented in Table 1 clearly shows that the full 
smoothing matrix did better than the constant and diagonal 
matrices in terms of performance because it produces the 
smallest value of the AMISE. The superiority of any method 
in kernel estimation is based on its ability to produce the 
minimum AMISE value in comparison with other methods 
(Janicka, 2009).  

The second data set examined in the blood fat concentration 
data also known as the lipid data of (Scott, Golto, Cole & 
Gorry, 1978). These data consist of measurements of 
cholesterol and triglycerides for 320 men diagnosed with 
coronary artery disease and the analysis of the data revealed 
that they are bimodal. The bimodality of these data is an 
indication that an increased risk for heart disease is associated 
with an increased cholesterol level. The data were 
standardized to obtain equal variances in each dimension and 
the smoothing matrices for this data set are    

 

 

Figure 4, Figure 5, and Figure 6 show the kernel estimates, 
which are the surface plots and the contour plots of the forms 
of parameterizations using the bivariate standard normal 
kernel. 

 

Figure-4. KEs (Surface and Contour plots) of Hc SP 

Table-1. Variance, Bias2, and AMISE of Ages Marriage Data 

 

 

Figure-5. KEs (Surface and Contour plots) of HD SP. 

 

 

Figure-6. KEs (Surface and Contour plots) of Hp SP. 

Table 2 shows the asymptotic integrated variance, asymptotic 
integrated squared bias, and asymptotic mean integrated 
squared error (AMISE) of the different forms of 
parameterizations for the second data set. 
 
Table-2. Variance, Bias2 and AMISE of Blood Fat Data Set 

Method
s 

   

HC-AMISE 0.001529204
5 

0.000764573
2 

0.002293777
7 

HD-AMISE 0.001501590
8 

0.000750918
4 

0.002252509
2 

HF-AMISE 0.001191838
6 

0.000240593
1 

0.001432431
7 

The constant smoothing matrix and diagonal smoothing 
matrix produced similar estimates which are considerably 
over-smoothed and the bimodality of the data is difficult to 
identify as presented in Figure 4 and Figure 5. The full 
smoothing matrix produced an estimate with the bimodality 
being clearly present as shown in Figure 6. More clearly 
noticed from Table 2 is that the full smoothing matrix did 
better in terms of performance that is, it produced the smallest 
AMISE value when compared with the constant and diagonal 
smoothing matrices. Another very important issue in kernel 

Methods.    
HC-AMISE 0.00315740 0.00157870 0.00473610 
HD-AMISE 0.00315542 0.00157771 0.00473313 
HF-AMISE 0.00251088 0.00039410 0.00290498 
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density estimation is its usefulness in highlighting structures 
of the data set and this vital role of highlighting and retaining 
structures is achieved in the estimate of the full smoothing 
matrix unlike the estimates of the constant and diagonal 
smoothing matrices where the inherent features of the data 
are smoothed away and presenting the data to be unimodal. 
The bimodal features of the data are of great importance 
because important medical decisions or advice can be made 
only when accurate statistical results are obtained graphically 
and it also simplifies the interpretation of results via 
visualization. 

4. Conclusion 
This study investigates the performance of smoothing 
matrices in multivariate kernel density estimation with an 
emphasis on the bivariate case using the constant, diagonal, 
and full smoothing parameterizations. KDE is primarily for 
data analysis (Nwankwo & Olayinka, 2019, Nwankwo & 
Ukhurebor, 2019) visualization. Visualization is becoming 
an interesting aspect of organizational security architecture 
and toolset (Nwankwo, 2020, Nwankwo & Ukaoha, 2019, 
Goldfarb, 2017).  While these estimators are very relevant for 
data presentation purposes especially as it affects a 
distribution to users for appropriate decision making, the 
results are best supported by the full smoothing matrices. The 
AMISE’s values show that the full smoothing matrices 
outperformed the constant and diagonal smoothing matrices 
for the bivariate KDE. The result shows that full smoothing 
matrices can give markedly better performance when 
compared with the constant and diagonal smoothing 
matrices.  
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